Communication
M. S. Sigman, J. Org. Chem. 2005, 70, 3343–3352; f) M. M. Rogers, J. E.
Wendlandt, I. A. Guzei, S. S. Stahl, Org. Lett. 2006, 8, 2257–2260; g) M. M.
Konnick, B. A. Gandhi, I. A. Guzei, S. S. Stahl, Angew. Chem. Int. Ed. 2006,
45, 2904–2907; Angew. Chem. 2006, 118, 2970–2973; h) G. J. Chuang, W.
Wang, E. Lee, T. Ritter, J. Am. Chem. Soc. 2011, 133, 1760–1762; i) V.
Jurčík, T. E. Schmid, Q. Dumont, A. M. Z. Slawin, C. S. J. Cazin, Dalton
Trans. 2012, 41, 12619–12623; j) D. Munz, T. Strassner, Angew. Chem. Int.
Ed. 2014, 53, 2485–2488; Angew. Chem. 2014, 126, 2518–2521; k) T. Yo-
shida, K. Tatsumi, M. Matsumoto, K. Nakatsu, A. Nakamura, T. Fueno, S.
Otsuka, New J. Chem. 1979, 3, 761–774; l) L. Vaska, Acc. Chem. Res. 1976,
9, 175–183.
ture and bonding in these complexes, yet facilitated oxygen-
atom-transfer reactivity with substrates, examples of which in-
clude the formation of IMeO upon thermolysis and quantitative
OAT from 1O2 to (Me3Si)2. The ready synthetic availability of 1
is expected to permit additional mechanistic studies of Pd0/II
reactivity uncoupled from large steric factors and also to pro-
vide insight into reactivity studies of PdII(η2-O2) complexes sup-
ported by NHC ligands.
[3] a) M. M. Konnick, I. A. Guzei, S. S. Stahl, J. Am. Chem. Soc. 2004, 126,
10212–10213; b) C. R. Landis, C. M. Morales, S. S. Stahl, J. Am. Chem. Soc.
2004, 126, 16302–16303; c) B. V. Popp, J. E. Wendlandt, C. R. Landis, S. S.
Stahl, Angew. Chem. Int. Ed. 2007, 46, 601–604; Angew. Chem. 2007, 119,
607–610.
Experimental Section
Pd(η2-O2)(IMe)2 (1O2): Compound 1 (400 mg, 1.34 mmol) was dis-
solved in THF (10 mL), and the yellow homogeneous solution was
stirred vigorously at room temperature under O2 pressure (1 atm)
to yield a bisque precipitate. The solid was collected on a frit,
washed, and dried in vacuo, yield 410 mg (1.24 mmol, 93 %). 1H
NMR (400 MHz, [D5]pyridine, +22 °C): δ = 6.99 (s, 4 H), 3.59 ppm (s,
12 H). 13C NMR (126 MHz, [D5]pyridine, +22 °C): δ = 180.4, 119.0,
[4] M. Yamashita, K. Goto, T. Kawashima, J. Am. Chem. Soc. 2005, 127, 7294–
7295.
[5] E. Lee, D. V. Yandulov, J. Organomet. Chem. 2011, 696, 4095–4103.
[6] a) W. Clegg, G. R. Eastham, M. R. J. Elsegood, B. T. Heaton, J. A. Iggo, R. P.
Tooze, R. Whyman, S. Zacchini, J. Chem. Soc., Dalton Trans. 2002, 3300–
3308; b) N. W. Aboelella, J. T. York, A. M. Reynolds, K. Fujita, C. R. Kin-
singer, C. J. Cramer, C. G. Riordan, W. B. Tolman, Chem. Commun. 2004,
1716–1717; c) G. Adjabeng, T. Brenstrum, C. S. Frampton, A. J. Robertson,
J. Hillhouse, J. McNulty, A. Capretta, J. Org. Chem. 2004, 69, 5082–5086;
d) S. Erhardt, V. V. Grushin, A. H. Kilpatrick, S. A. Macgregor, W. J. Marshall,
D. C. Roe, J. Am. Chem. Soc. 2008, 130, 4828–4845; e) S. Fantasia, S. P.
Nolan, Chem. Eur. J. 2008, 14, 6987–6993; f) S. Fantasia, J. D. Egbert, V.
Jurčík, C. S. J. Cazin, H. Jacobsen, L. Cavallo, D. M. Heinekey, S. P. Nolan,
Angew. Chem. Int. Ed. 2009, 48, 5182–5186; Angew. Chem. 2009, 121,
5284–5288; g) L. A. Labios, M. D. Millard, A. L. Rheingold, J. S. Figueroa,
J. Am. Chem. Soc. 2009, 131, 11318–11319.
[7] C. J. Cramer, W. B. Tolman, K. H. Theopold, A. L. Rheingold, Proc. Natl.
Acad. Sci. USA 2003, 100, 3635–3640.
[8] a) A. Singh, U. Anandhi, M. A. Cinellu, P. R. Sharp, Dalton Trans. 2008,
2314–2317; b) A. J. Ingram, D. Solis-Ibarra, R. N. Zare, R. M. Waymouth,
Angew. Chem. Int. Ed. 2014, 53, 5648–5652; Angew. Chem. 2014, 126,
5754–5758.
37.9 ppm. IR (Nujol): ν = 1237 (s), 1127 (w), 1089 (w), 823 cm–1 (s,
˜
η2-O2). C10H16N4O2Pd (330.66): calcd. C 36.32, H 4.88, N 16.94; found
C 36.13, H 4.49, N 16.58. Bisque-orange crystals suitable for X-ray
were grown, over a total of 4 h, by layering DMSO (0.5 mL) contain-
ing 1O2 (15 mg) with pyridine (1.0 mL), followed by slow addition
of THF (3 mL) to the homogeneous solution, storage at +4 °C for
1 h and at –15 °C for 3 h.
Acknowledgments
This work was supported by the Stanford University, USA and
the Institute for Basic Science (IBS), grant number IBS-R007-D1].
Keywords: Palladium · Carbene ligands · Ligand
oxygenation · Atom transfer · Oxygen
[9] S. Nakamura, N. Tsuno, M. Yamashita, I. Kawasaki, S. Ohta, Y. Ohishi, J.
Chem. Soc. Perkin Trans. 1 2001, 429–436.
[10] a) V. V. Grushin, J. Am. Chem. Soc. 1999, 121, 5831–5831; b) V. V. Grushin,
Organometallics 2001, 20, 3950–3961.
[1] a) A. N. Campbell, S. S. Stahl, Acc. Chem. Res. 2012, 45, 851–863; b) L.
Boisvert, K. I. Goldberg, Acc. Chem. Res. 2012, 45, 899–910; c) S. S. Stahl,
Science 2005, 309, 1824–1826; d) S. S. Stahl, Angew. Chem. Int. Ed. 2004,
43, 3400–3420; Angew. Chem. 2004, 116, 3480–3501; e) M. L. Scheuer-
mann, D. W. Boyce, K. A. Grice, W. Kaminsky, S. Stoll, W. B. Tolman, O.
Swang, K. I. Goldberg, Angew. Chem. Int. Ed. 2014, 53, 6492–6495; Angew.
Chem. 2014, 126, 6610–6613.
[2] a) S. S. Stahl, J. L. Thorman, R. C. Nelson, M. A. Kozee, J. Am. Chem. Soc.
2001, 123, 7188–7189; b) D. R. Jensen, M. J. Schultz, J. A. Mueller, M. S.
Sigman, Angew. Chem. Int. Ed. 2003, 42, 3810–3813; Angew. Chem. 2003,
115, 3940–3943; c) J. A. Mueller, C. P. Goller, M. S. Sigman, J. Am. Chem.
Soc. 2004, 126, 9724–9734; d) C. N. Cornell, M. S. Sigman, J. Am. Chem.
Soc. 2005, 127, 2796–2797; e) M. J. Schultz, S. S. Hamilton, D. R. Jensen,
[11] R.-Z. Ku, J.-C. Huang, J.-Y. Cho, F.-M. Kiang, K. R. Reddy, Y.-C. Chen, K.-J.
Lee, J.-H. Lee, G.-H. Lee, S.-M. Peng, S.-T. Liu, Organometallics 1999, 18,
2145–2154.
[12] a) S. C. Lee, R. H. Holm, Inorg. Chim. Acta 2008, 361, 1166–1176; b) R. H.
Holm, J. P. Donahue, Polyhedron 1993, 12, 571–589; c) D. D. Wright, S. N.
Brown, Inorg. Chem. 2013, 52, 7831–7833.
[13] a) M. B. Ansell, D. E. Roberts, F. G. N. Cloke, O. Navarro, J. Spencer, Angew.
Chem. Int. Ed. 2015, 54, 5578–5582; Angew. Chem. 2015, 127, 5670–5674;
b) M. Suginome, Y. Ito, Chem. Rev. 2000, 100, 3221–3256; c) M. Suginome,
H. Oike, Y. Ito, Organometallics 1994, 13, 4148–4150.
Received: August 17, 2016
Published Online: ■
Eur. J. Inorg. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim