C O M M U N I C A T I O N S
Scheme 1. Synthesis of Glycodendrimer Glycosylating Reagents
1-4a
its protein degrading activity, and (iii) Gal presentation. Protein
lacking carbohydrate (SBL-WT) was only moderate (IC50 ) 2.4
µM) in its inhibition and glycoprotein lacking protein-degrading
activity (S156C-2b treated with irreversible inhibitor PMSF22) was
ineffective (IC50 > 5 µM). Replacement of Gal in S156C-2b by
glucose (Glc) gave a control glycodendriprotein S156C-2b(Glc)
that showed only similar levels of inhibition to SBL-WT. The
nanomolar level of co-aggregation inhibition displayed by S156C-
2b is, to the best of our knowledge, the most potent to date.
Furthermore, the glycodendriprotein strategy allows ready carbo-
hydrate retooling for an alternative lectin or pathogen.
Acknowledgment. We thank Genencor International for funding
(B.G.D., M.M.C., J.B.J.), Dr Karl Sanford for his continued interest
in this work, and Dr. W. Bruce Turnbull for his critical reading of
this manuscript.
Supporting Information Available: Glycodendrimer reagent and
glycodendriprotein syntheses and characterization, binding assays, dose
response curves, and further results, figures, and discussion (PDF). This
References
(1) Beuth, J.; Stoffel, B.; Pulverer, G. AdV. Exp. Med. Biol. 1996, 408, 51.
(2) Lingwood, C. A. Curr. Biol. 1999, 2, 695.
(3) Mulvey, G.; Kitov, P. I.; Marcato, P.; Bundle, D. R.; Armstrong, G. D.
Biochimie 2001, 83, 841.
(4) Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321.
(5) Lee, Y. C.; Towsend, R. R.; Hardy, M. R.; Lo¨nngren, J.; Arnarp, J.;
Haraldsson, M.; Lo¨nn, H. J. Biol. Chem. 1983, 258, 199.
(6) Lundquist, J. J.; Toone, E. J. Chem. ReV. 2002, 102, 555.
(7) Lindhorst, T. K. Top. Curr. Chem. 2002, 218, 217.
(8) Kitov, P. I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.;
Pannu, N. S.; Read, R. J.; Bundle, D. R. Nature 2000, 403, 669.
(9) Kitov, P. I.; Shimizu, H.; Homans, S. W.; Bundle, D. R. J. Am. Chem.
Soc. 2003, 125, 3284.
a
Reagents and conditions: A: a) Gal(Ac)5, BF3‚Et2O, DCM, 76%; b)
MeONa, MeOH, 83%; c) NaSSO2CH3, DMF, 78%; see ref 15. B: d)
NaSSO2CH3, DMF, 56%; e) 2 equiv Gal-S-Na+, DMF, 0 °C 55%. C: f)
Boc2O, DCM, -78 °C, 68%; g) (ClCH2CO)2O, DCM, 97%; h) 2 equiv
Gal-S-Na+, DMF, 88%; i) CF3COOH, DCM, 91%; j) thiobutyrolactone,
dithiothreitol, NaHCO3, water, EtOH, 69%; k) NHS-butyl-MTS, DMF, 87%
over 2 steps from 8; l) 1 equiv Gal-S-Na+, DMF, 48%; m) 9, DMF, 78%;
n) CF3COOH, DCM, 94%; o) NHS-butyl-MTS, DMF, 77%; p) NHS-butyl-
MTS, DMF, 87%; q) 9, DMF, 81%; r) CF3COOH, DCM; s) NHS-butyl-
MTS, DMF, 67% over 2 steps from 12.
(10) Roy, R.; Zanini, D.; Meunier, S. J.; Romanowska, A. J. Chem. Soc., Chem.
Commun. 1993, 1869.
(11) Davis, B. G. Chem. ReV. 2002, 102, 579.
(12) Rademacher, T. W.; Parekh, R. B.; Dwek, R. A. Annu. ReV. Biochem.
1988, 57, 785.
(13) Rudd, P. M.; Joao, H. C.; Coghill, E.; Fiten, P.; Saunders: M. R.;
Opdenakker, G.; Dwek, R. A. Biochemistry 1994, 33, 17.
(14) Witte, K.; Sears, P.; Martin, R.; Wong, C.-H. J. Am. Chem. Soc. 1997,
119, 2114.
(15) Davis, B. G.; Lloyd, R. C.; Jones, J. B. J. Org. Chem. 1998, 63, 9614.
(16) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.;
Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684.
(17) Macmillan: D.; Bill, R. M.; Sage, K. A.; Fern, D.; Flitsch, S. L. Chem.
Biol. 2001, 8, 125.
display of surface lectins on bacterial surfaces. This revealed
increasing affinity with increasing Gal-antennae (KD for S156C-1,
2a, 2b, 3, 4 ≈ 1.8 × 10-3, 1.1 × 10-3, 1.5 × 10-3, 3.4 × 10-4, 1.4
× 10-7 M, respectively). Only a low-level (KD ≈ 10-2 M) binding
of S156C-4 to the control mannose-binding lectin from snowdrop29
was observed.
(18) Liu, H. T.; Wang, L.; Brock, A.; Wong, C.-H.; Schultz, P. G. J. Am.
Chem. Soc. 2003, 125, 1702.
(19) Watt, G. M.; Lund, J.; Levens, M.; Kolli, V. S. K.; Jefferis, R.; Boons,
G-J. Chem. Biol. 2003, 10, 807.
(20) Davis, B. G. Chem. Commun. 2001, 351.
(21) Nagahori, N.; Lee, R. T.; Nishimura, S.-I.; Page, D.; Roy, R.; Lee, Y. C.
ChemBioChem 2002, 3, 836.
(22) For further discussion, see SI.
With this model Gal-binding lectin interaction established, we
next evaluated the ability to inhibit the function of a Gal-binding
pathogen. Gram-positive A. naeslundii aggressively colonizes oral
cavities,27 surgical prostheses,30 and internal cavities.31 We tested
the ability of our glycoproteins to inhibit the co-aggregation of A.
naeslundii with co-pathogen Streptococcus oralis (Figure 1C,D).22
A. naeslundii uses the pili fimA adhesin, which binds Gal-tipped
structures,26 to bind structures on the surface of S. oralis during
this crucial phase in the colonization process.25,32 The inhibitory
potency of S156C-1-4, designed to degrade the A. naeslundii Gal-
binding adhesin using 1-4 as homing ligands, depended strongly
on carbohydrate structure.25 Optimal inhibitory potency was
observed for S156C-2b that has a bi-antennary carbohydrate
structure.33 The limited inhibitory potency of S156C-2a demon-
strated that bi-antennary display alone is not enough. Dose
response22 revealed that S156C-2b is a nanomolar inhibitor of A.
naeslundii co-aggregation: IC50 ) 20 nM, >106 more potent than
small-molecule adhesin inhibitor lactose (IC50 ) 33 mM). Three
key properties of hybrid glycoprotein S156C-2b are essential for
optimal inhibition: (i) its multi-antennary carbohydrate display, (ii)
(23) Rawlings, N. D.; O’Brien E.; Barrett, A. J. Nucleic Acids Res. 2002, 30,
343.
(24) Multiple, indiscriminate ligands (e.g. ref 21) fail.
(25) Davis, B. G.; Sala, R. F.; Hodgson, D. R. W.; Ullman, A.; Khumtaveeporn,
K.; Estell, D. A.; Sanford, K.; Bott, R. R.; Jones, J. B. ChemBioChem
2003, 4, 533.
(26) Hallberg, K.; Holm, C.; O¨ hman, U.; Stro¨mberg, N. Infect. Immun. 1998,
66, 4403.
(27) Ruhl, S.; Cisar, J. O.; Sandberg, A. L. Infect. Immun. 2000, 68, 6346.
(28) Page, D.; Roy, R. Bioconjugate Chem. 1997, 8, 714.
(29) Shibuya, N.; Goldstein, I. J.; Van Damme, E. J. M.; Peumans, W. J. J.
Biol. Chem. 1988, 263, 728.
(30) Wust, J.; Steiger, U.; Vuong, H.; Zbinden, R. J. Clin. Microbiol. 2000,
38, 929.
(31) Ormsby, A. H.; Bauer, T. W.; Hall, G. S. Pathology 1998, 30, 65.
(32) Ochiai, K.; Kurita-Ochiai, T.; Kamino, Y.; T., I. J. Med. Microbiol. 1993,
39, 183.
(33) A. naeslundii fimA may be functionally active as a dimer,26 PNA as a
tetramer. Bi-antennary complex glycoproteins are postulated to be natural
fimA ligands.27
JA031698U
9
J. AM. CHEM. SOC. VOL. 126, NO. 15, 2004 4751