Please do not adjust margins
Chemical Science
Page 4 of 6
DOI: 10.1039/C7SC04207H
COMMUNICATION
Journal Name
3
(a) W. S. Wadsworth and Jr. W. D. Emmons, J. Am. Chem. Soc.,
1961, 83, 1733–1738; (b) C. R. Johnson, J. R. Shanklin and R. A.
Kirchhoff, J. Am. Chem. Soc., 1973, 95, 6462–6463; (c) S. Sano, T.
Takehisa, S. Ogawa, K. Yokoyama and Y. Nagao, Chem. Pharm.
Bull. 2002, 50, 1300–1302; (d) Z-Y. Peng, F-F. Ma, L-F. Zhu, X-M.
Xie and Z. Zhang, J. Org. Chem. 2009, 74, 6855−6858.
4 (a) G. Wittig and G. Geissler, Liebigs Ann. Chem. 1953, 580, 44–57;
(b) G. Wittig and U. Schollkopf, Ber. Dtsch. Chem. Ges. 1954, 87
1318–1330; (c) J. Boutagy and R. Thomas, Chem. Rev. 1974, 74
87–99; (d) B. E. Maryanoff and A. B. Reitz, Chem. Rev. 1989, 89
863–927.
,
,
,
5 (a) D. J. Peterson, J. Org. Chem., 1968, 33, 780–784; (b) J. Huang,
C. Wu and W. D. Wulff, J. Am. Chem. Soc. 2007, 129, 13366–
13367; (c) D. J. Ager, The Peterson Olefination Reaction, L. A.
Paquette, Ed. Organic Reactions, 1990, 38, 1-224.
6 (a) M. Julia and J. M. Paris, Tetrahedron Lett 1973, 14, 4833–4836;
(b) P. R. Blakemore, J. Chem. Soc., Perkin Trans. 1 2002, 2563–
2585; (c) K. Ando, T. Kobayashi and N. Uchida, Org. Lett. 2015,
17, 2554−2557.
7 (a) F. N. Tebbe, G. W. Parshall and G. S. Reddy, J. Am. Chem.
Soc. 1978, 100, 3611–3613; (b) I. Beadham and J. Micklefield,
Curr. Org. Syn. 2005, 2, 231–250; (c) N. A. Petasis and E. I. Bzowej,
J. Am. Chem. Soc. 1990, 112, 6392–6394.
Scheme 3 Possible reaction mechanism.
8 (a) J. E. McMurry and M. P. Fleming, J. Am. Chem. Soc., 1974, 96
,
4708–4709; (b) J. E. McMurry and L. R. Krepski, J. Org. Chem.
1976, 41, 896–897; (c) S. Tyrlik and I. Wolochowicz, Bull. Soc.
Chim. Fr. 1973, 2147-2148; (d) B. E. Kahn and R. D. Rieke, Chem.
Conclusions
Rev. 1988, 88, 733–745; (e) J. E. McMurrv. Chem. Rev. 1989, 89
,
In summary, we have developed an ruthenium(II)-catalyzed,
hydrazine-mediated olefination method via reductive carbonyl
1513–1524; (f) T. Takeda and A. Tsubouchi, The McMurry
Coupling and Related Reactions, S. E. Denmark, Ed.; Organic
Reactions, 2013, 82, 1-470.
coupling reactions. This chemistry possesses
a distinct
mechanistic profile and highlights the use of naturally
abundant carbonyl functionalities for efficient olefin synthesis.
Other striking features include cross-coupling capability, mild
reaction conditions, good functional group tolerance and
stoichiometric benign byproducts. Taken together, our findings
are expected to spur more interests in developing catalytic
methods in this field. Further investigations on increasing the
reaction scope, synthetic applications and mechanistic details
are undergoing in our laboratory.
9
(a) N. Balu, S. K. Nayak and A. Banerji, J. Am. Chem. Soc. 1996,
118, 5932–5937; (b) C. Villiers and M. Ephritikhine, Chem. Eur. J.
2001, 7, 3043–3051; (c) M. H. Chisholm and J. A. Klang, J. Am.
Chem. Soc. 1989, 111, 2324–2325; (d) X-F. Duan, J. Zeng, J-W. Lü
and Z-B. Zhang, J. Org. Chem. 2006, 71, 9873–9876; (e) H. R.
Diéguez, A. López, V. Domingo, J. F. Arteaga, J. A. Dobado, M.
Mar Herrador, J. F. Quílez del Moral and A. F. Barrero, J. Am.
Chem. Soc. 2010, 132, 254–259; (f) L. Zhang, X. Yu, L. Zhang, X.
Zhou and Y. Lin, Org. Chem. Front. 2014,
10 X-.J. Dai and C.-J. Li, J. Am. Chem. Soc. 2016, 138, 5433−5440.
11 H. Wang, X-.J. Dai and C.-J. Li, Nat. Chem. 2016, , 374−378.
12 N. Chen, X-J. Dai, H. Wang and C-J. Li, Angew. Chem., Int. Ed.,
2017, 56, 6260-6263.
1, 929-935.
9
This work was financially supported by the Canada Research
Chair (Tier 1) foundation, FQRNT (CCVC), NSERC, CFI and
McGill University. We also thank the CSC (China Scholarship
Council) for the postdoctoral fellowship (W. Wei).
13 X-J. Dai, H. Wang and C-J. Li, Angew. Chem., Int. Ed., 2017, 56
6302-6306.
,
14 A few examples for the formation of carbon-carbon double bond
via the coupling of stoichiometric metalloazines with carbonyl
compounds, see: (a) G. M. Arvanitis, J. Schwartz and D. Van
References
Engen, Organometallics 1986,
Meier and J. Schwartz, J. Am. Chem. Soc. 1986, 108, 1322–1323;
(c) G. M. Arvanitis and J. Schwartz, Organometallics 1987, , 421–
423; (d) G. M. Arvanitis, J. Smegal, I. Meier, A. C. C. Wong, J.
Schwartz and D. Van Engen, Organometallics 1989, , 2717–2723.
15 A recent review on ruthenium-catalyzed transfer hydrogenation
for C–C bond formation, see: F. Perez, S. Oda, L.M. Geary and M.
J. Krische, Top. Curr. Chem. 2016, 374, 365-387.
5, 2157–2159; (b) J. A. Smegal, I. K.
1 (a) S. E. Kelly, In Alkene Synthesis; B. M. Trost and I. Fleming, Eds.;
Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991;
Vol. 1, p 729–817; (b) D. M. Hodgson and L. T. Boulton, In
Preparation of Alkenes; J. M. J. Williams, Ed.; Oxford University
Press: Oxford, 1996; p 81; (c) R. Dumeunier and I. E. Markó, In
Modern Carbonyl Olefination; T. Takeda, Ed.; Wiley-VCH:
Weinheim, Germany, 2004.
6
8
2 (a) A. H. Hoveyda and A. R. Zhugralin, Nature. 2007, 450, 243–251;
16 For the reactions of [RuCl2(ƞ6-arene)]2 with tertiary phosphines,
please see. (a) R. A. Zelonka and M. C. Baird, Can J. Chem.,
1972, 50, 3063-3072; (b) M. A. Bennett and A. K. Smith J. Chem.
Soc., Dalton Trans. 1974, 233-241; (c) H. Werner, R. Werner,
Chem. Ber., 1982, 115, 3766-3780; (d) M. A. Bennett, T.-N.
(b) X. Guo, J. Wang and C.-J. Li, J. Am. Chem. Soc, 2009, 131
,
15092–15093; (c) S. Takemoto, E. Shibata, M. Nakajima, Y.
Yumoto, M. Shimamoto and H. Matsuzaka, J. Am. Chem. Soc.
2016, 138, 14836–14839; (d) J. R. Ludwig, P. M. Zimmerman, J. B.
Gianino and C. S. Schindler, Nature. 2016, 533, 374–379.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins