apoptolidin A,6 several syntheses of the aglycon, known as
could be adapted to a synthesis of apoptolidin A by a late-
stage attachment of the sugar units to advanced intermediates
in the apoptolidinone synthesis.
apoptolidinone,7 including one from our laboratory,8
a
number of partial syntheses,9 as well as selective synthetic
modifications10 have been reported.
The glycosyl fluoride 4 derived from L-olivomycose and
D-oleandrose would be utilized to attach the required
disaccharide at C27 of mixed ketal 2 or a similar advanced
intermediate prior to incorporation of the trienoate 3.
Sulfoxide 5 would serve as the glycosylating agent for the
incorporation of the 6′-deoxy-L-glucose unit at C9 either
immediately before or after assembly of the C1-C10 and
C11-C28 subunits via a stereoselective olefin cross-metath-
esis reaction. Mixed ketal 2 and trienoate 3 were advanced
intermediates in our recently reported synthesis of apopto-
lidinone.8
Scheme 1. Retrosynthesis for Apoptolidin A
The required glycosyl donors 4 and 5 for the incorporation
of the sugar units were obtained as illustrated in Schemes 2
and 3. Each of the individual monosaccharide units were
obtained by de novo synthesis through the application of a
chlorotitanium glycolate aldol approach to establish the C4
and C5 stereocenters of each of the monosaccharides.9e
Scheme 2. Synthesis of the C27 Disaccharide
The necessary glycosyl fluoride 4 was accessed from the
protected disaccharide 10 as shown in Scheme 2. Direct
exposure of the hemiacetal 10 to DAST provided the glycosyl
fluoride 4 (>10:1 R:ꢀ).6c Since the glycosyl fluoride was
somewhat unstable, it was utilized in the subsequent glyco-
sylation of the C27 hydroxyl group without further purifica-
tion.
The synthesis of 6′-deoxy-L-glucose (the C9 sugar unit)
donor 5 was readily accomplished from lactone 69e (Scheme
3). Protection of the diol as the corresponding TBS ether 7
was followed by reduction of the lactone with i-Bu2AlH to
deliver the protected 6′-deoxy-L-glucose 8. The hemiacetal
Apoptolidin A (1, Scheme 1) is comprised of a macro-
cyclic lactone and two unusual carbohydrate units attached
through glycosidic linkages at the C9 and C27 hydroxyl
groups. Our highly convergent approach to the synthesis of
apoptolidin A focused initially on the individual preparation
of the aglycon, apoptolidinone,8 and the carbohydrate units,9e
with the expectation that the approach to apoptolidinone
(6) (a) Wehlan, H.; Dauber, M.; Fernaud, M. T. M.; Schuppan, J.;
Mahrwald, R.; Ziemer, B.; Garcia, M. E. J.; Koert, U. Angew. Chem., Int.
Ed. 2004, 43, 4597. (b) Wehlan, H.; Dauber, M.; Fernaud, M. T. M.;
Schuppan, J.; Kieper, S.; Mahrwald, R.; Garcia, M. E. J.; Koert, U. Chem.
Eur. J. 2006, 12, 7378. (c) Nicolaou, K. C.; Fylaktakidou, K. C.;
Monenschein, H.; Li, Y. W.; Weyershausen, B.; Mitchell, H. J.; Wei, H. X.;
Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125,
15433. (d) Nicolaou, K. C.; Li, Y. W.; Sugita, K.; Monenschein, H.;
Guntupalli, P.; Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.;
Giannakakou, P.; O’Brate, A. J. Am. Chem. Soc. 2003, 125, 15443. (e)
Nicolaou, K. C.; Li, Y.; Fylaktakidou, K. C.; Mitchell, H. J.; Sugita, K.
Angew. Chem., Int. Ed. 2001, 40, 3854. (f) Nicolaou, K. C.; Li, Y.;
Fylaktakidou, K. C.; Mitchell, H. J.; Wei, H. X.; Weyershausen, B. Angew.
Chem., Int. Ed. 2001, 40, 3849.
(9) (a) Abe, K.; Kato, K.; Arai, T.; Rahim, M. A.; Sultana, I.; Matsumura,
S.; Toshima, K. Tetrahedron Lett. 2004, 45, 8849. (b) Bouchez, L. C.; Vogel,
P. Chem. Eur. J. 2005, 11, 4609. (c) Chang, S. S.; Xu, J.; Loh, T. P.
Tetrahedron Lett. 2003, 44, 4997. (d) Craita, C.; Didier, C.; Vogel, P.
J. Chem. Soc., Chem. Commun. 2007, 2411. (e) Crimmins, M. T.; Long,
A. Org. Lett. 2005, 7, 4157. (f) Daniel, P. T.; Koert, U.; Schuppan, J. Angew.
Chem., Int. Ed. 2006, 45, 872. (g) Jin, B. H.; Liu, Q. S.; Sulikowski, G. A.
Tetrahedron 2005, 61, 401. (h) Nicolaou, K. C.; Li, Y. W.; Weyershausen,
B.; Wei, H. X. J. Chem. Soc., Chem. Commun. 2000, 307. (i) Paquette,
W. D.; Taylor, R. E. Org. Lett. 2004, 6, 103. (j) Schuppan, J.; Ziemer, B.;
Koert, U. Tetrahedron Lett. 2000, 41, 621. (k) Sulikowski, G. A.; Lee,
W. M.; Jin, B.; Wu, B. Org. Lett. 2000, 2, 1439. (l) Toshima, K.; Arita, T.;
Kato, K.; Tanaka, D.; Matsumura, S. Tetrahedron Lett. 2001, 42, 8873.
(m) Handa, M.; Scheidt, K. A.; Bossart, M.; Zheng, N.; Roush, W. R. J.
Org. Chem. 2008, 73, 1031. (n) Handa, M.; Smith, I. I. I.; W, J.; Roush,
W. R. J. Org. Chem. 2008, 73, 1036.
(7) (a) Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U. Angew. Chem.,
Int. Ed. 2001, 40, 2063. (b) Wu, B.; Liu, Q. S.; Sulikowski, G. A. Angew.
Chem., Int. Ed. 2004, 43, 6673. (c) Schuppan, J.; Wehlan, H.; Keiper, S.;
Koert, U. Chem. Eur. J. 2006, 12, 7364. (d) Ghidu, V. P.; Wang, J. Q.;
Wu, B.; Liu, Q. S.; Jacobs, A.; Marnett, L. J.; Sulikowski, G. A. J. Org.
Chem. 2008, 73, 4949.
(10) (a) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org.
Lett. 2003, 5, 2299. (b) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.;
Seto, H. Org. Lett. 2003, 5, 487. (c) Wender, P. A.; Gulledge, A. V.;
Jankowski, O. D.; Seto, H. Org. Lett. 2002, 4, 3819.
(8) Crimmins, M. T.; Christie, H. S.; Chaudhary, K.; Long, A. J. Am.
Chem. Soc. 2005, 127, 13810.
832
Org. Lett., Vol. 11, No. 4, 2009