98
I.D. Kostas / Journal of Organometallic Chemistry 634 (2001) 90–98
1H-NMR (acetone-d6, l ppm): 7.86–7.76, 7.66–7.61,
7.50–7.45 and 7.32–7.28 (4×m, 13H, Ar); 4.12 (br s,
3H, COD–CH); 3.73 (sl br s, 4H, OH, exchangeable
with D2O); 3.59–3.38 (m, 16H, NCH2CH2O); 2.59 (m,
4H, COD–CH2). Four of the COD–CH2 protons are
not observed and are assumed to be obscured by the
acetone-d5 signal. 13C{1H}-NMR (acetone-d6, l ppm):
156.59–126.71 (Ar); 69.97 (COD–CH); 61.24 and 60.66
(NCH2CH2OH). The COD–CH2 carbons are not ob-
served and are assumed to be obscured by the acetone-
d6 signal. 31P{1H}-NMR (acetone-d6, l ppm): 41.41 (d,
References
[1] C.S. Slone, D.A. Weinberger, C.A. Mirkin, Prog. Inorg. Chem.
48 (1999) 233.
[2] J.W. Faller, G. Mason, J. Parr, J. Organomet. Chem. 626 (2001)
181 and references cited therein.
[3] Y. Jiang, Q. Jiang, G. Zhu, X. Zhang, Tetrahedron Lett. 38 (1997)
215.
[4] P. Braunstein, M.D. Fryzuk, F. Naud, S.J. Rettig, J. Chem. Soc.
Dalton Trans. (1999) 589.
[5] P. Braunstein, F. Naud, A. Pfaltz, S.J. Rettig, Organometallics 19
(2000) 2676.
[6] A. Bader, E. Lindner, Coord. Chem. Rev. 108 (1991) 27.
[7] J. Holz, M. Quirmbach, A. Bo¨rner, Synthesis (1997) 983.
[8] K.V. Katti, H. Gali, C.J. Smith, D.E. Berning, Acc. Chem. Res.
32 (1999) 9.
J
RhP=150.6 Hz). ESI MS: m/z 679 ([M−BF4]+).
Anal. Found: C, 52.63; H, 5.83; N, 3.06. Calc. for
C34H45BF4N2O4PRh (766.42): C, 53.28; H, 5.92; N,
3.66%.
[9] A. Bo¨rner, Eur. J. Inorg. Chem. (2001) 327.
[10] G. Papadogianakis, R.A. Sheldon, in: B. Cornils, W.A. Herrmann
(Eds.), Tenside Ligands in Aqueous-Phase Organometallic Catal-
ysis, Ch. 3.2.4, Wiley–VCH, Weinheim, 1998.
[11] A. Buhling, P.C.J. Kamer, P.W.N.M. van Leeuwen, J.W.
Elgersma, K. Goubitz, J. Fraanje, Organometallics 16 (1997) 3027.
[12] E. Valls, J. Suades, R. Mathieu, Organometallics 18 (1999) 5475.
[13] E. Valls, J. Suades, R. Mathieu, J.F. Piniella, A. Alvarez-Larena,
J. Organomet. Chem. 626 (2001) 139.
[14] C.D. Frohning, C.W. Kohlpaintner (Hydroformylation, Ch.
2.1.1), H. Brunner (Hydrogenation, Ch. 2.2), in: B. Cornils, W.A.
Herrmann (Eds.), Applied Homogeneous Catalysis with
Organometallic Compounds, vol. 1, VCH, Weinheim, 1996.
[15] P.W.N.M. van Leeuwen, C. Claver (Eds.), Rhodium Catalyzed
Hydroformylation, Kluwer Academic Publishers, Dordrecht,
2000.
[16] Survey of hydroformylation for 1999: F. Ungva´ry, Coord. Chem.
Rev. 213 (2001) 1.
[17] J.M. Grosselin, C. Mercier, G. Allmang, F. Grass, Organometal-
lics 10 (1991) 2126.
[18] D.J. Darensbourg, N.W. Stafford, F. Joo´, J.H. Reibenspies, J.
Organomet. Chem. 488 (1995) 99.
4.11. Hydroformylation of styrene catalyzed by
rhodium complex 9
In a typical experiment, styrene (2 ml, 17.456 mmol)
and a 4 mM solution of rhodium complex 9 in
dichloromethane (3 ml, 0.012 mmol) were placed under
argon in an oven-dried autoclave, which was then
closed, pressurized with syngas (CO/H2=1:1) to 100
bar and brought to the corresponding temperature.
After the required reaction time, the autoclave was
cooled to room temperature, the pressure was carefully
released and the solution was passed through celite and
1
analyzed by GC, GCMS and H NMR spectra. Con-
versions were determined by GC.
[19] A. Fukuoka, W. Kosugi, F. Morishita, M. Hirano, L. McCaffrey,
W. Henderson, S. Komiya, Chem. Commun. (1999) 489.
[20] I.D. Kostas, C.G. Screttas, J. Organomet. Chem. 585 (1999) 1.
[21] I.D. Kostas, J. Chem. Res. (S) (1999) 630.
[22] I.D. Kostas, J. Organomet. Chem. 626 (2001) 221.
[23] I.D. Kostas, C.G. Screttas, C.P. Raptopoulou, A. Terzis, Tetrahe-
dron Lett. 38 (1997) 8761.
[24] C.S. Salteris, I.D. Kostas, M. Micha-Screttas, G.A. Heropoulos,
C.G. Screttas, A. Terzis, J. Org. Chem. 64 (1999) 5589.
[25] J.M. Saa´, J. Morey, G. Sun˜er, A. Frontera, A. Costa, Tetrahedron
Lett. 32 (1991) 7313.
[26] T.W. Greene, P.G.M. Wuts (Eds.), Protective Groups in Organic
Synthesis, Ch. 2, 2nd ed., Wiley, New York, 1991.
[27] J.G.E. Krauter, M. Beller, Tetrahedron 56 (2000) 771.
[28] I. Le Gall, P. Laurent, E. Soulier, J.-Y. Salau¨n, H. des Abbayes,
J. Organomet. Chem. 567 (1998) 13.
4.12. Hydrogenation of trans-cinnamaldehyde catalyzed
by rhodium complex 10
A typical experiment was performed in an autoclave,
in which air was evacuated and replaced with argon. A
2 mM solution of rhodium complex 10 in i-PrOH/H2O
(95:5) (4 ml, 0.008 mmol) and cinnamaldehyde (0.5 ml,
3.972 mmol) were placed under argon in the autoclave,
which was then closed, pressurized with hydrogen (30
or 100 bar) and brought to the corresponding tempera-
ture. After the required reaction time, the work-up and
the analysis of the products was performed as described
above for hydroformylation.
[29] S. Borns, R. Kadyrov, D. Heller, W. Baumann, A. Spannenberg,
R. Kempe, J. Holz, A. Bo¨rner, Eur. J. Inorg. Chem. (1998) 1291.
[30] A. Bo¨rner, A. Kless, J. Holz, W. Baumann, A. Tillack, R.
Kadyrov, J. Organomet. Chem. 490 (1995) 213.
[31] D.H.M.W. Thewissen, K. Timmer, J.G. Noltes, J.W. Marsman,
R.M. Laine, Inorg. Chim. Acta 97 (1985) 143.
Acknowledgements
[32] G. Giordano, R.H. Crabtree, Inorg. Synth. 28 (1990) 88.
[33] M.A. Bennett, J.D. Saxby, Inorg. Chem. 7 (1968) 321.
[34] M. Green, T.A. Kuc, S.H. Taylor, J. Chem. Soc. (A) (1971) 2334.
[35] It is a known compound; however no experimental details and
analytical data were given: S. Gervat, E. Le´onel, J-Y. Barraud, V.
Ratovelomanana, Tetrahedron Lett. 34 (1993) 2115.
[36] Known compound: T. Ibaya, T. Inagi, T. Mizutani, JP 03181447
A2 (1991); Chem Abstr. 116 (1992) 41064.
The author thanks Marianna Kyttari and Maria
Vojatzi for technical assistance and Eleni Siapi for
elemental analyses and ESI MS measurements. The
investigation was supported by the National Hellenic
Research Foundation.