Communication
van der Plas, Nucleophilic Aromatic Substitution of Hydrogen, Academic
Press, San Diego, 1994.
[4] M. Ma˛kosza, T. Lemek, A. Kwast, F. Terrier, J. Org. Chem. 2002, 67, 394–
400.
The experiments and calculations necessary to get the full pic-
ture of the gas-phase reactions of the anions of mono-N-
methyl-2-X-5-nitroanilides of malonic acids 2a–c are under
progress and their results will be published upon completion.
[5] a) W. Danikiewicz, T. Bienkowski, D. Kozlowska, M. Zimnicka, J. Am. Soc.
´
Rapid Commun. Mass Spectrom. 2003, 17, 697–705; c) W. Danikiewicz, T.
Conclusion
The first observation of an elimination of water molecule from
the gas-phase intramolecular sH adducts made possible to di-
rectly compare the relative rates of the SNAr and SNArH gas-
phase reactions within the same molecule. The results ob-
tained show that, similarly to the reactions taking place in
a condensed phase, the formation of sH adduct is much faster
than the formation of sX adduct when X=Cl. For X=F, these
two processes proceed with comparable rates. Experimental
observations were supported by the results of the DFT calcula-
tions. Our results support the general statement that sH
adduct is an initial, reversibly formed intermediate in the reac-
tion of nitroarenes with carbanions, whereas formation of sX
adducts leading to SNAr reaction is a slower but irreversible
process.
M. E. Crestoni, S. Fornarini, F. Lanucara, J. Lemaire, P. Maꢁtre, D. Scuderi,
Garver, Z. Yang, S. Kato, S. Wren, K. Vogelhuber, W. C. Lineberger, V. Bier-
[7] I. Fernꢂndez, G. Frenking, E. Uggerud, J. Org. Chem. 2010, 75, 2971–
2980.
[9] M. Ma˛kosza, M. Paszewski, Synthesis 2002, 2203–2206.
´
´
[10] a) B. Wilenska, P. Swider, W. Danikiewicz, J. Mass Spectrom. 2014, 49,
1247–1253; b) M. Zimnicka, O. Sekiguchi, E. Uggerud, W. Danikiewicz,
Acknowledgements
This work has been financed by the National Science Centre,
Poland, Grant No. UMO-2012/05/B/ST4/01161. We express our
thanks to the Wroclaw Center for Networking and Supercom-
puting (WCSS) and Interdisciplinary Centre for Mathematical
and Computational Modeling (ICM) in Warsaw (grant no. G50-
2) for providing computer time and facilities.
[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ha-
segawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd,
E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
A. D. Daniels, ꢅ. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox,
Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
Keywords: aromatic nucleophilic substitution
·
density
functional calculations · mass spectrometry · substitution of
hydrogen
[1] M. Ma˛kosza, Chem. Eur. J. 2014, 20, 5536–5545.
[2] F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-VCH, Wein-
heim, 2013.
[3] a) M. Ma˛kosza, K. Wojciechowski, Chem. Rev. 2004, 104, 2631–2666;
b) M. Ma˛kosza, Chem. Soc. Rev. 2010, 39, 2855–2868; c) M. Ma˛kosza,
Synthesis 2011, 2341–2356; d) O. N. Chupakhin, V. N. Charushin, H. C.
Received: December 18, 2014
Published online on && &&, 0000
&
&
Chem. Eur. J. 2015, 21, 1 – 5
4
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!