B. Ahmed-Omer et al. / Tetrahedron Letters 50 (2009) 3352–3355
3355
Table 5
7. Ahmed-Omer, B.; Wirth, T. In Microreactors in Organic Synthesis and Catalysis;
Wirth, T., Ed.; Wiley-VCH: Weinheim, 2008; pp 122–139.
Heck coupling of preformed diazonium salt 5 with alkenes 2
8. (a) Ahmed, B.; Barrow, D.; Wirth, T. Adv. Synth. Catal. 2006, 348, 1043–1048; (b)
Ahmed-Omer, B.; Barrow, D.; Wirth, T. Chem. Eng. J. 2008, 135S, S280–S283.
9. Harries, N.; Burns, J. R.; Barrow, D. A.; Ramshaw, C. J. Heat Mass Transfer 2003,
46, 3313–3322.
10. Bhanage, B. M.; Zhao, F.-G.; Shirai, M.; Arai, M. Tetrahedron Lett. 1998, 39, 9509–
9512.
N2+BF4
R
10 mol% Pd(OAc)2
R
AcOH, DMF
O2N
O2N
5
2
3
11. (a) Liu, S.; Fukuyama, T.; Sato, M.; Ryu, I. Synlett 2004, 1814–1816; (b) Liu, S.;
Fukuyama, T.; Ryu, I. Org. Process Res. Dev. 2004, 8, 477–481.
12. Solodenko, W.; Wen, H.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Jas, G.;
Schönfeld, H.; Kunz, U.; Kirschning, A. Eur. J. Org. Chem. 2004, 3601–3610.
13. Karbass, N.; Sans, V.; Garcia-Verdugo, E.; Burguete, M. I.; Luis, S. V. Chem.
Commun. 2006, 3095–3097.
14. Nikbin, N.; Ladlow, M.; Ley, S. V. Org. Process Res. Dev. 2007, 11, 458–462.
15. Snyder, D. A.; Noti, C.; Seeberger, P. H.; Schael, F.; Bieber, T.; Rimmel, G.;
Ehrfeld, W. Helv. Chim. Acta 2005, 88, 1–9.
Entry
R
Producta
Yield (%)
1
2
3
4
5
CO2Me (2a)
Ph (2b)
4-CF3C6H4 (2c)
3-NO2C6H4 (2e)
4-BrC6H4 (2g)
3o29
3i
64
42
57
49
61
3p30
3q31
3r32
a
Reaction conditions: Pd(OAc)2 (10 mol %), aniline derivative 4 (1 mmol), alkene
2 (1 mmol), t-BuONO (4 mmol), AcOH, DMF, 0–5 °C, residence time: 27 min.
16. Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F.
Angew. Chem. Int. Ed. 2007, 46, 1734–1737.
17. Singh, B. K.; Kaval, N.; Tomar, S.; Van der Eycken, E.; Parmar, V. S. Org. Process
Res. Dev. 2008, 12, 468–474.
18. Jeffery, T. Tetrahedron 1996, 52, 10113–10130.
19. Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622–
4643.
20. Zhou, P.; Li, Y.; Sun, P.; Zhou, J.; Bao, J. Chem. Commun. 2007, 1418–1420.
21. (a) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733–1738;
(b) Wang, J. X.; Wang, K.; Zhao, L.; Li, H.; Fu, Y.; Hu, Y. Adv. Synth. Catal. 2006,
348, 1262–1270.
22. (a) Mu, B.; Li, T.; Xu, W.; Zeng, G.; Liu, P.; Wu, Y. Tetrahedron 2007, 63, 11475–
11488; (b) Warner, P.; Sutherland, R. J. Org. Chem. 1992, 57, 6294–6300.
23. (a) Pews, R. G.; Ojha, N. D. J. Am. Chem. Soc. 1969, 91, 5769–5773; (b)
Djakovitch, L.; Heise, H.; Kohler, K. J. Organomet. Chem. 1999, 584, 16–26.
24. Cai, M.; Huang, Y.; Zhao, H.; Song, C. J. Organomet. Chem. 2003, 682, 20–25.
25. Grasa, G. A.; Singh, R.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2003, 687,
269–279.
26. Anstead, G. M.; Katzenellenbogen, J. A. J. Phys. Chem. 1988, 92, 6249–6258.
27. Brunner, H.; de Courcy, N. L. C.; Genêt, J. P. Tetrahedron Lett. 1999, 40, 4815–
4818.
28. Representative experimental procedure: Stock solutions were prepared in
individual Schlenk tubes under inert atmosphere. In a typical experiment,
solutions were prepared as follows: (A) 0.1 m solution of aniline (93 mg, 1
mmol) in DMF (10 mL); (B) 0.005 m solution of Pd(OAc)2 (22.4 mg, 0.1 mmol)
in DMF (20 mL); (C) 0.2 m solution of alkene (1 mmol) in DMF (5 mL); (D) 0.8m
solution of t-BuONO (4 mmol) and AcOH (1.25 mL) in DMF (5 mL); and (E) pure
substituents make them unreactive, as reflected in the very low
yields given by substrates such as p-methoxyaniline 4b, in contrast
to the very good conversions achieved using substrates such as
p-iodoaniline 4d.
For comparison, we also performed a series of reactions using
commercially available p-nitrobenzenediazonium tetrafluorobo-
rate 5 to provide an alternative viable route with relatively high
product yields as shown in Table 5. By the direct use of an isolated
intermediate one could expect cleaner reactions and better yields.
However, only small improvements were seen meaning that the
in situ production of the diazonium compounds in the microchan-
nel worked rather well.
In conclusion, by utilising the large specific interfacial area
provided by the microreactor under segmented flow, the Heck reac-
tion of aryl halides and diazonium intermediates was found to be
more efficient than in parallel flow and under conventional (batch)
conditions in a flask. This demonstrates that even homogeneous
reactions can be enhanced by using the segmented flow technique.
hydrocarbon solvent (hexane, heptane, nonane or decane) used as
a
segmenting phase. Each solution was loaded individually into gas-tight glass
syringes which were then connected onto the microflow system (PTFE)
through a designated inlet using a T-connector. Tubing length 2920 mm
(section 1 150 mm, residence time 3.2 min) + (section 2 - 2770 mm, residence
Acknowledgements
We thank EPSRC for support of this work and the National Mass
Spectrometry Service Centre, Swansea, for mass spectrometric data.
time 23.7 min), internal diameter 500
lm, and system volume 573 ll. The
solutions were then delivered into the microchannel at the required flow rates,
in a continuous segmented flow manner using KD Scientific syringe pumps.
First the diazotisation of aniline was carried out in section 1 at 0 °C by pumping
solution (A) along with solutions (D) and (E), while in section 2 solutions (B)
and (C) were introduced then mixed with the diazotised flow from section 1 at
ambient temperature to carry out the Heck coupling. The reactions were run
for the appropriate total residence time of approximately 27 min. After
collecting the output of the reaction, the crude mixture was first washed with
water followed by 5% aq. sodium bicarbonate solution. After drying the
mixture with sodium sulfate, the solvent was removed under reduced
References and notes
1. (a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320–2322; (b) Heck, R. F. Org.
React. 1982, 27, 345–390; (c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000,
100, 3009–3066; (d) Knowles, J. P.; Withing, A. Org. Biomol. Chem. 2007, 5, 31–
44; (e)The Mizoroki-Heck Reaction; Oestreich, M., Ed.; Wiley: Chichester, 2009.
2. Masters, J. J.; Link, J. T.; Snyder, L. B.; Young, W. B.; Danishefsky, S. J. Angew.
Chem. Int. Ed. Engl. 1995, 34, 1723–1726.
3. Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028–11029.
4. Ziegler, F. E.; Chakraborty, U. R.; Weisenfeld, R. B. Tetrahedron 1981, 37, 4035–
4040.
5. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61, 11771–11835.
6. (a) Microreactors in Organic Synthesis and Catalysis; Wirth, T., Ed.; Wiley-VCH:
Weinheim, 2008; (b) Yoshida, J.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14,
7450–7459; (c) Watts, P.; Wiles, C. Org. Biomol. Chem. 2007, 5, 727–732; (d)
Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem. 2007, 5, 733–740;
(e) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T.
Chem. Rev. 2007, 107, 2300–2318.
pressure. Finally, the product was isolated by preparative TLC
chromatography on silica gel using an appropriate solvent system.
29. Zhang, Z.; Wang, Z. J. Org. Chem. 2006, 71, 7485–7487.
/ column
30. Hanna, P. E.; Gammans, R. E.; Sehon, R. D.; Lee, M. K. J. Med. Chem. 1980, 23,
1038–1044.
31. Ling, C.; Minato, M.; Lahti, P. M.; Willigen, H. V. J. Am. Chem. Soc. 1992, 114,
9959–9969.
32. Choudary, B. M.; Kantam, M. L.; Reddy, N. M.; Gupta, N. M. Catal. Lett. 2002, 82,
79–83.