Journal of the American Chemical Society
Page 4 of 6
Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191-
allyl sulfoxide, compound 33a was obtained in 71% yield (see
Table S1 in SI for detailed optimization conditions), the mecha-
nistic pathway of which involves a [2,3]-sigmatropic rearrange-
ment on allyl sulfonium ylide.23,24 In addition, the reactions be-
tween 15 and various aryl allyl sulfoxides afforded 2,2-
disubstituted 1,3-cyclohexadiones 33b-33d in moderate to good
yields. When compounds 16 and 1a were employed, 33e and 33f
could be obtained in high yields, both of which are a mixture of
diastereoisomers.25 To the best of our knowledge, it is the first
example to incorporate three substituents on the alkyne bond of a
cyclohexyne, namely one nucleophile and two electrophiles,
through “onium” ylide,23 allowing a thorough utilization of cyclo-
hexyne. Moreover, both DMSO and sulfinyldibenzene could react
with 1a as well, affording 34 and 35 in 82% and 81% yields, re-
spectively (Scheme 5). In the absence of allyl group on these sul-
foxides, a direct Me/Ph-group migration took place from sulfur to
oxygen.24
218; f) García-López, J.-A.; Greaney, M. F. Chem. Soc. Rev. 2016,
45, 6766-6798; g) Karmakar, R.; Lee, D. Chem. Soc. Rev. 2016, 45,
4459-4470; h) Shi, J.; Li, Y.; Li, Y. Chem. Soc. Rev. 2017, 46, 1707-
1719.
(3) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983,
1211-1214.
(4) For selected examples, see: a) Hoye, T. R.; Baire, B.; Niu, D.;
Willoughby, P. H.; Woods, B. P. Nature 2012, 490, 208-212; b) Niu,
D.; Willoughby, P. H.; Woods, B. P.; Baire, B.; Hoye, T. R. Nature
2013, 501, 531-534; c) Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34-
40; d) Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523-530; e) Xiao,
X.; Hoye, T. R. Nat. Chem. 2018, 10, 838-844.
(5) Scardiglia, F.; Roberts, J. D. Tetrahedron 1957, 1, 343-344.
(6) Atanes, N.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L.
Tetrahedron Lett. 1998, 39, 3039-3040.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) a) Medina, J. M.; McMahon, T. C.; Jiménez-Osés, G.; Houk,
K. N.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 14706-14709; b)
McMahon, T. C.; Medina, J. M.; Yang, Y.-F.; Simmons, B. J.; Houk,
K. N.; Garg, N. K. J. Am. Chem. Soc. 2015, 137, 4082-4085; c) Shah,
T. K.; Medina, J. M.; Garg, N. K. J. Am. Chem. Soc. 2016, 138, 4948-
4954.
In summary, we proposed and accomplished an oxidative
dearomatization protocol from aryne precursors to prepare two
types of cyclohexenynone equivalents, both of which exhibited
good to excellent cycloalkyne reactivity with diverse trapping
agents. Moreover, all the alkene, ketone, and methoxy group on
the ring could be manipulated prior to the formation of cyclohex-
enynone, further expanding the structural diversity of cyclohex-
enynone scaffolds. The establishment of this oxidative dearomati-
zation protocol sets up a platform for in-depth investigation of
cyclohexyne chemistry in the presence of various substituents as
well as the discovery of new synthetic maneuvers. As an exhibi-
tion, aryl allyl sulfoxides were found to react with cyclohexen-
ynones to concomitantly form C=O, C-S, and C-C bonds through
a cascade process.
(8) Tlais, S. F.; Danheiser, R. L. J. Am. Chem. Soc. 2014, 136,
15489-15492.
(9) a) Fujita, M.; Sakanishi, Y.; Kim, W. H.; Okuyama, T. Chem.
Lett. 2002, 31, 908-909; b) Fujita, M.; Kim, W. H.; Sakanishi, Y.;
Fujiwara, K.; Hirayama, S.; Okuyama, T.; Ohki, Y.; Tatsumi, K.;
Yoshioka, Y. J. Am. Chem. Soc. 2004, 126, 7548-7558.
(10) a) Gampe, C. M.; Boulos, S.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2010, 49, 4092-4095; b) Gampe, C. M.; Carreira, E. M.
Angew. Chem., Int. Ed. 2011, 50, 2962-2965.
(11) Al-Omari, M.; Banert, K.; Hagedorn, M. Angew. Chem., Int.
Ed. 2006, 45, 309-311.
(12) Hioki, Y.; Okano, K.; Mori, A. Chem. Commun. 2017, 53,
2614-2617.
ASSOCIATED CONTENT
(13) Mortier, J., Arene chemistry: reaction mechanism and
methods for aromatic compounds. John Wiley & Sons, Inc.: 2016.
(14) a) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc.
2015, 137, 5670-5673; b) Li, Y.; Qiu, D.; Gu, R.; Wang, J.; Shi, J.; Li,
Y. J. Am. Chem. Soc. 2016, 138, 10814-10817; c) Qiu, D.; He, J.;
Yue, X.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 3130-3133; d) Li, L.; Qiu,
D.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 3726-3729; e) Shi, J.; Xu, H.;
Qiu, D.; He, J.; Li, Y. J. Am. Chem. Soc. 2017, 139, 623-626; f) Xu,
H.; He, J.; Shi, J.; Tan, L.; Qiu, D.; Luo, X.; Li, Y. J. Am. Chem. Soc.
2018, 140, 3555-3559; g) Lv, C.; Wan, C.; Liu, S.; Lan, Y.; Li, Y.
Org. Lett. 2018, 20, 1919-1923.
(15) a) Tohma, H.; Kita, Y., Synthetic applications (total synthesis
and natural product synthesis). In Hypervalent iodine chemistry:
modern developments in organic synthesis, Wirth, T., Ed. Springer
Berlin Heidelberg: Berlin, Heidelberg, 2003; pp 209-248; b)
Pouységu, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235-
2261; c) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45,
1570-1580.
(16) a) Ahmad, F. B. H. Pertanika 1989, 12, 219-223; b) Ahmad,
F. B. H.; Bruce, J. M. Synth. Commun. 1996, 26, 1263-1271.
(17) Miller, L. L.; Stewart, R. F. J. Org. Chem. 1978, 43, 3078-
3079.
(18) Lu, C.; Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012,
77, 2279-2284.
(19) Reynolds, G. A. J. Org. Chem. 1964, 29, 3733-3734.
(20) Huang, X.-C.; Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Wang, F.; Li,
J.-H. Org. Lett. 2008, 10, 1525-1528.
(21) Stevens, R. V.; Bisacchi, G. S. J. Org. Chem. 1982, 47, 2393-
2396.
Supporting Information. Experimental details for all chemical
reactions and measurements and X-ray single crystallographic
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
Author Contributions
†Qiu, D. and Shi, J. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors gratefully acknowledge research support of this work
by Fundamental Research Funds for the Central Universities
(106112017CDJXSYY0001, 2018CDXZ0003), Graduate Scien-
tific Research and Innovation Foundation of Chongqing (Grant
No. CYB17020), and NSFC (21772017).
REFERENCES
(1) a) Hoffmann, R. W., Dehydrobenzene and Cycloalkynes.
Academic Press, New York: 1967; b) Krebs, A.; Wilke, J. Top. Curr.
Chem. 1983, 109, 189-233.
(2) For recent reviews, see: a) Sanz, R. Org. Prep. Proced. Int.
2008, 40, 215-291; b) Gampe, C. M.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2012, 51, 3766-3778; c) Tadross, P. M.; Stoltz, B. M. Chem.
Rev. 2012, 112, 3550-3577; d) Bhunia, A.; Yetra, S. R.; Biju, A. T.
Chem. Soc. Rev. 2012, 41, 3140-3152; e) Dubrovskiy, A. V.;
(22) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K. N. J.
Am. Chem. Soc. 2014, 136, 15798-15805.
(23) Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027-1038.
(24) It is postulated that sulfonium ions like iv/v are produced up-
on reaction of DMSO with arynes, see: Liu, F.-L.; Chen, J.-R.; Zou,
Y.-Q.; Wei, Q.; Xiao, W.-J. Org. Lett. 2014, 16, 3768-3771.
ACS Paragon Plus Environment