with Y-substituted phenol in the presence of triethylamine in
anhydrous ether as reported in the literature.22,25 Substrates 1k
and 1l were prepared from the reactions of 4-nitrophenol and
4-hydroxybenzoic acid (or 4-dimethylaminobenzoic acid) in the
presence of dicyclohexyl carbodiimide in ethyl acetate.25d Their
purity was checked by means of melting point and spectral data
such as IR and H NMR characteristics. Doubly glass distilled
water was further boiled and cooled under nitrogen just before
use. Other chemicals used were of the highest quality available.
Santos, J. Org. Chem., 2005, 70, 8088–8092; (e) E. A. Castro, M.
Aliaga, S. Evangelisti and J. G. Santos, J. Org. Chem., 2004, 69, 2411–
2416.
3 (a) H. K. Oh, J. Y. Oh, D. D. Sung and I. Lee, J. Org. Chem., 2005,
70, 5624–5629; (b) H. K. Oh, J. E. Park, D. D. Sung and I. Lee, J. Org.
Chem., 2004, 69, 9285–9288; (c) H. K. Oh, I. K. Kim, H. W. Lee and
I. Lee, J. Org. Chem., 2004, 69, 3806–3810; (d) H. K. Oh, J. E. Park,
D. D. Sung and I. Lee, J. Org. Chem., 2004, 69, 3150–3153; (e) H. K.
Oh, M. H. Ku, H. W. Lee and I. Lee, J. Org. Chem., 2002, 67, 3874–
3877.
4 (a) L. Garcia-Rio, J. C. Mejuto and M. Perez-Lorenzo, Chem.–Eur. J.,
2005, 11, 4361–4373; (b) D. N. Kevill and M. J. D’Souza, J. Org. Chem.,
2004, 69, 7044–7050; (c) N. Diaz, D. Suarez and T. L. Sordo, Chem.–
Eur. J., 1999, 5, 1045–1054; (d) N. J. Baxter, L. J. M. Rigoreau, A. P.
Laws and M. I. Page, J. Am. Chem. Soc., 2000, 122, 3375–3385; (e) W. J.
Spillane, P. McGrath, C. Brack and A. B. O’Byrne, J. Org. Chem., 2001,
66, 6313–6316; (f) I. M. Gordon, H. Maskill and M. F. Ruasse, Chem.
Soc. Rev., 1989, 18, 123–151.
5 (a) I. H. Um, J. Y. Lee, H. W. Lee, Y. Nagano, M. Fujio and Y. Tsuno,
J. Org. Chem., 2005, 70, 4980–4987; (b) I. H. Um, K. H. Kim, H. R.
Park, M. Fujio and Y. Tsuno, J. Org. Chem., 2004, 69, 3937–3942;
(c) I. H. Um, J. S. Min, J. A. Ahn and H. J. Hahn, J. Org. Chem., 2000,
65, 5659–5663; (d) I. H. Um, J. A. Seok, H. T. Kim and S. K. Bae,
J. Org. Chem., 2003, 68, 7742–7746; (e) I. H. Um, S. E. Lee and H. J.
Kwon, J. Org. Chem., 2002, 67, 8999–9005; (f) I. H. Um, E. K. Chung
and S. M. Lee, Can. J. Chem., 1998, 78, 729–737.
6 (a) B. Galabov, Y. Atanasov, S. Ilieva and H. F. Schaefer, III, J. Phys.
Chem. A, 2005, 109, 11470–11474; (b) S. Ilieva, B. Galabov, D. G.
Musaev, K. Morokuma and H. F. Schaefer, III, J. Org. Chem., 2003,
68, 1496–1502.
7 H. Zipse, L. Wang and K. N. Houk, Liebigs Ann., 1996, 1511–1522.
8 (a) I. Lee and D. D. Sung, Curr. Org. Chem., 2004, 8, 557–567; (b) I.
Lee, H. W. Lee, B. C. Lee and J. H. Choi, Bull. Korean Chem. Soc.,
2002, 23, 201–204; (c) H. W. Lee, A. K. Guha, C. K. Kim and I. Lee,
J. Org. Chem., 2002, 67, 2215–2222.
9 W. Yang and D. G. Drueckhammer, Org. Lett., 2000, 2, 4133–4136.
10 (a) A. Williams, Chem. Soc. Rev., 1994, 23, 93–100; (b) A. Williams,
Adv. Phys. Org. Chem., 1992, 27, 1–55; (c) A. Williams, Concerted
Organic and Bio-organic Mechanisms, CRC Press, Boca Raton, FL,
1999; (d) M. J. Colthurst and A. Williams, J. Chem. Soc., Perkin Trans.
2, 1997, 1493–1498; (e) A. H. M. Renfrew, D. Rettura, J. A. Taylor,
J. M. J. Whitmore and A. Williams, J. Am. Chem. Soc., 1995, 117,
5484–5491; (f) A. Williams, Acc. Chem. Res., 1989, 22, 387–392; (g) S.
Ba-Saif, A. K. Luthra and A. Williams, J. Am. Chem. Soc., 1987, 109,
6362–6368.
11 (a) D. Stefanidis, S. Cho, S. Dhe-Paganon and W. P. Jencks, J. Am.
Chem. Soc., 1993, 115, 1650–1656; (b) G. O. Andres, A. M. Granados
and R. H. Rossi, J. Org. Chem., 2001, 66, 7653–7657; (c) M. A.
Fernandez and R. H. Rossi, J. Org. Chem., 1999, 64, 6000–6004;
(d) E. A. Castro, D. Arellano, P. Pavez and J. G. Santos, J. Org. Chem.,
2003, 68, 6192–6196; (e) E. A. Castro, P. Pavez and J. G. Santos, J. Org.
Chem., 2003, 68, 3640–3645; (f) E. A. Castro, P. Pavez and J. G. Santos,
J. Org. Chem., 2003, 68, 9034–9039.
1
Kinetics
The kinetic studies were performed with a UV–vis spectropho-
tometer for slow reactions (t1/2 ≥ 10 s) or with a stopped-flow
spectrophotometer for fast reactions (t1/2 < 10 s) equipped with
a constant temperature circulating bat◦h to keep the temperature
of the reaction mixture at 25.0 0.1 C. All the reactions were
performed in 80 mol% H2O–20 mol% DMSO to eliminate a
solubility problem. The reactions were followed by monitoring
the appearance of the leaving aryloxide at a fixed wavelength
corresponding to the maximum absorption (kmax) of Y–C6H4O−.
All reactions were carried out under pseudo-first-order conditions
in which the concentration of nucleophiles was at least 20 times
greater than that of the substrate. Nucleophile stock solution of
ca. 0.2 M was prepared in a 25.0 mL volumetric flask just before
use and transferred by gastight syringes. The amine stock solution
of ca. 0.2 M was prepared by dissolving 2 equiv. of free amine
(or amine hydrochloride) and 1 equiv. of standardized HCl (or
NaOH) solution to make a self-buffered solution.
Typically, the reaction was initiated by adding 5 lL of a 0.01 M
solution of the substrate in acetonitrile by a syringe to a 10 mm
quartz UV cell containing 2.50 mL of the thermostated reaction
mixture made up of solvent and an aliquot of the nucleophile stock
solution. Generally, the nucleophile concentration was varied over
the range (1–100) × 10−3 M, while the substrate concentration was
2 × 10−5 M. Usually, five different nucleophile concentrations were
employed, and replicate kobsd values were determined to calculate
the second-order rate constants (kN) from the slope of linear plots
of kobsd vs. nucleophile concentrations.
Products analysis
Y-Substituted phenoxide was liberated quantitatively and identi-
fied as one of the reaction products by comparison of the UV–vis
spectra after completion of the reaction with those of the authentic
sample under the same reaction conditions.
12 (a) A. C. Hengge, Acc. Chem. Res., 2002, 35, 105–112; (b) J. M. Younker
and A. C. Hengge, J. Org. Chem., 2004, 69, 9043–9048; (c) R. A. Hess,
A. C. Hengge and W. W. Cleland, J. Am. Chem. Soc., 1997, 119, 6980–
6983; (d) A. C. Hengge and R. A. Hess, J. Am. Chem. Soc., 1994, 116,
11256–11257; (e) A. C. Hengge, W. A. Edens and H. Elsing, J. Am.
Chem. Soc., 1994, 116, 5045–5049.
13 (a) J. P. Guthrie, J. Am. Chem. Soc., 1996, 118, 12878–12885; (b) D.
Xie, Y. Zhou, D. Xu and H. Guo, Org. Lett., 2005, 7, 2093–2095.
14 (a) E. Buncel, I. H. Um and S. Hoz, J. Am. Chem. Soc., 1989, 111,
971–975; (b) I. H. Um, S. J. Hwang and E. Buncel, J. Org. Chem., 2006,
71, 915–920; (c) I. H. Um, J. Y. Lee, H. T. Kim and S. K. Bae, J. Org.
Chem., 2004, 69, 2436–2441; (d) I. H. Um, H. J. Han, J. A. Ahn, S.
Kang and E. Buncel, J. Org. Chem., 2002, 67, 8475–8480.
Acknowledgements
This work was supported by Korea Research Foundation (2005-
015-C00256).
15 (a) I. H. Um, M. J. Kim and H. W. Lee, Chem. Commun., 2000, 2165–
2166; (b) I. Tunon and M. F. Ruiz-Lopez, Chem.–Eur. J., 2005, 11,
6743–6753; (c) J. R. Pliego and J. M. Riveros, Chem.–Eur. J., 2002, 8,
1945–1953.
16 W. P. Jencks and J. Regenstein, Handbook of Biochemistry, 2nd edn, ed.
H. A. Sober, Chemical Rubber Publishing Co., Cleveland, OH, 1970,
p. J-195.
References
1 (a) W. P. Jencks, Chem. Rev., 1985, 85, 511–527; (b) M. I. Page and
A. Williams, Organic and Bio-organic Mechanisms, Longman, Harlow,
UK, 1997, ch. 7.
2 (a) E. A. Castro, Chem. Rev., 1999, 99, 3505–3524; (b) E. A. Castro,
R. Aguayo, J. Bessolo and J. G. Santos, J. Org. Chem., 2005, 70, 7788–
7791; (c) E. A. Castro, R. Aguayo, J. Bessolo and J. G. Santos, J. Org.
Chem., 2005, 70, 3530–3536; (d) E. A. Castro, M. Gazitua and J. G.
17 (a) F. A. Carrol, Perspectives on Structure and Mechanism in Organic
Chemistry, Brooks/Cole, New York, 1998, pp. 371–386; (b) T. H. Lowry
2984 | Org. Biomol. Chem., 2006, 4, 2979–2985
This journal is
The Royal Society of Chemistry 2006
©