302
J. C. Simpson et al. / Bioorg. Med. Chem. 10 (2002) 291–302
0.75H, JAB=13.7 Hz, JAX=8.5 Hz), 2.87–2.82 (m,
0.25H), 2.67–2.28 (unresolved m, 3H), 2.15–2.07 (unre-
solved m, 1.5H), 1.98–1.56 (unresolved m, 7.5H), 1.30–
1.20 (m, 0.25H); 13C NMR (75 MHz, CDCl3) two rota-
mers, d 178.7, 178.5, 174.0, 173.8, 172.4, 169.5, 169.2,
137.6, 129.4, 129.2, 128.6, 128.5, 127.2, 62.1, 61.7, 61.6,
59.8, 47.4, 45.5, 34.9, 34.8, 33.5, 32.2, 30.0, 28.0, 25.0,
21.9, 19.6, 19.2. IR (diffusion reflectance) 3196 (m),
3025 (w), 2960 (m), 2871 (m), 1687 (s), 1640 (s), 1625 (s),
1439 (m), 1350 (m), 1289 (m), 1187 (m), 915 (w), 704
(m), 500 (m) cmÀ1. LRFAB MS (3-NBA/Li+ matrix)
m/e (relative intensity) identity of ion if known; 419 (32)
MLi+; 313 (52); 160 (100) MLi+–C14H17N2O2–N; 127
(47); 119 (38). HRFAB MS (matrix): m/e calcd for
C22H28N4O4Li (MLi+) 419.2270; found 419.2253 (dev 5
ppm). Elemental analysis calcd for C22H28N4O4&z_-
rad;H2O: C, 61.38; H, 7.02; N, 13.01. Found: C, 61.05,
H, 7.08, N, 13.33.
4. (a) For alternate approaches to understanding TRH/TRH-
R1 binding, see Hinkle, P. M.; Woroch, E. L.; Tashjian, G. H.
J. Biol. Chem. 1974, 249, 3085. (b) Goren, H. J.; Bauce, L. G.;
Vale, W. Mol. Pharmacol. 1977, 13, 606. (c) Kamiya, K.;
Takamoto, M.; Wada, Y.; Fujino, M.; Nishikawa, M. J.
Chem. Soc., Chem. Commun. 1980, 438. (d) Sharif, N. A.; To,
Z.; Whiting, R. L. Biochem. Biophys. Res. Commun. 1989, 161,
1306. (e) Vonhof, S.; Feuerstein, G. Z.; Cohen, L. A.; Labroo,
V. M. Eur. J. Pharmacol. 1990, 180, 1. (f) Perlman, J. H.;
Laakkonen, L. J.; Guarnieri, F.; Osman, R.; Gershengorn,
M. C. Biochemistry 1996, 35, 7643. (g) Laakkonen, L. J.;
Guarnieri, F.; Perlman, J. H.; Gershengorn, M. C.; Osman, R.
Biochemistry 1996, 35, 7651.
5. (a) Tong, Y.; Fobian, Y. M.; Wu, M.; Boyd, N. D.; Moel-
ler, K. D. J. Org. Chem. 2000, 65, 2484. (b) Beal, L. M.; Liu,
B.; Chu, W.; Moeller, K. D. Tetrahedron 2000, 56, 10113. (c)
Long, R. D.; Moeller, K. D. J. Am. Chem. Soc. 1997, 119,
12394. (d) Li, W.; Moeller, K. D. J. Am. Chem. Soc. 1996, 118,
10106.
6. Rutledge, L. D.; Perlman, J. H.; Gershengorn, M. C.;
Marshall, G. R.; Moeller, K. D. J. Med. Chem. 1996, 39, 1571.
7. (a) Li, W.; Moeller, K. D. J. Am. Chem. Soc. 1996, 118,
10106. (b) Laakkonen, L.; Li, W.; Perlman, J. H.; Guarnieri,
F.; Osman, R.; Moeller, K. D.; Gershengorn, M. C. Mol.
Pharmacol. 1996, 49, 1092.
Acknowledgements
We thank the National Institutes of Health (RO1
GM5324001 and R01 DK43036) for their generous
financial support. In addition, we thank the Washington
University High Resolution NMR Facility, partially
supported by NIH grants RR02004, RR05018, and
RR07155, and the Washington University Mass Spec-
trometry Resource Center, partially supported by NIH
RR00954, for their assistance.
8. Chu, W.; Perlman, J. H.; Gershengorn, M. C.; Moeller,
K. D. Bioorg. Med. Chem. Lett. 1998, 8, 3093.
9. More recent studies using HEK 293EM cells stably expres-
sing mTRH-R1 have shown that the fully constrained analo-
gue (n=m=1) is a full agonist of the receptor. Gershengorn,
M. C.; Chu, W.; Moeller, K. D. Unpublished results.
10. (a) For reviews of anodic amide oxidations, see: Shono,
T.; Matsumura, Y.; Tsubata, K. In Organic Synthesis; Saucy,
G., Ed.; Organic Synthesis, 1984, Vol. 63, p 206, and refer-
ences therein. (b) Shono, T. In Topics in Current Chemistry;
Steckhan, E., Ed.; Springer: Berlin, 1988; Vol. 148, p 131. (c)
For applications to functionalizing amino acids, see: Moeller,
K. D. Top. Curr. Chem. 1997, 185, 49 and in particular refer-
ence 13 therein.
11. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.;
Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982,
104, 6697.
12. (a) For published procedures, see: Perlman, J. H.; Thaw,
C. N.; Laakkonen, L.; Bowers, C. Y.; Osman, R.; Ger-
shengorn, M. C. J. Biol. Chem. 1994, 269, 1610. (b) Straub,
R. E.; Frech, G. C.; Joho, R. H.; Gershengorn, M. C. Proc.
Natl. Acad. Sci. U.S.A. 1990, 87, 9514.
References and Notes
1. (a) For a recent review concerning the use of lactam based
peptidomimetics, see: Hanessian, S.; McNaughton-Smith, G.;
Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789.
(b) For more recent references see: Polyak, F.; Lubell, W. D.
J. Org. Chem. 1998, 63, 5937. (c) Curran, T. P.; Marcaurell,
L. A.; O’Sullivan, K. M. Organic Letters 1999, 1, 1998. (d)
Gosselin, F.; Lubell, W. D. J. Org. Chem. 2000, 65, 2163 and
references therein.
2. (a) For reviews on the biology of TRH, see: Thyrotropin-
Releasing Hormone: Biomedical Significance; In Metcalf
Olson, G. L.; Cheung, H. C.; Voss, M. E.; Hill, D. E.; Kahn,
M.; Madison, V. S.; Cook, C. M.; Sepinwall, J, Eds. Proceed-
ings of the Biotech USA 89 Meeting 1989, San Francisco,
October 1989. (b) Coa, J.; O’Donnell, D.; Vu, H.; Payza, K.;
Pou, C.; Godbout, C.; Jakob, A.; Pelletier, M.; Lembo, P.;
Ahmad, S.; Walker, P. J. Biol. Chem. 1998, 273, 32281 and
references therein.
3. (a) For work leading to 1 as a proposed endocrine receptor
bound conformation of TRH, see: Marshall, G. R.; Gorin, F.
A.; Moore, M. L. In Annual Reports in Medicinal Chemistry;
Clarke, F. H., Ed.; Academic: New York, 1978; Vol. 13, p 227,
and references therein. (b) Font, J. PhDThesis, Washington
University in St. Louis, 1986. (c) For an alternative applica-
tion of this model to the construction of TRH mimetics, see
Olson, G. L.; Cheung, H. C.; Chiang, E.; Madison, V. S.;
Sepinwall, J.; Vincent, G. P.; Winokur, A.; Gary, K. A. J.
Med. Chem. 1995, 38, 2866.
13. Clark, M. Cramer, III., R. D.; Van Opdenbosch, N. J.
Comp. Chem. 1989, 10, 982.
14. (a) For an overview of the approach to active site model-
ing utilized, see: Beusen, D. D.; Shands, E. F. B.; Karasek,
S. F.; Marshall, G. R.; Dammkoehler, R. A. J. Molec. Struct.
(Theochem.) 1996, 370, 157. (b) Buesen, D. D.; Shands,
E. F. B. Drug Discovery Today 1996, 1 (10), 429. (c) Damm-
koehler, R. A.; Karasek, S. F.; Shands, E. F. B.; Marshall,
G. R. J. Computer-Aided Mol. Des. 1995, 9, 491. (d) Damm-
koehler, R. A.; Karasek, S. F.; Shands, E. F. B.; Marshall,
G. R. J. Computer-Aided Mol. Des. 1989, 3, 3.
15. For a description of general experimental details, see:
Wong, P. L.; Moeller, K. D. J. Am. Chem. Soc. 1993, 115,
11434.
16. If the acid is not used soon after synthesis, over time it will
lose the silyloxy protecting group and give rise to intramole-
cular lactone formation.