H. Yoda et al. / Tetrahedron Letters 42 (2001) 9225–9228
9227
contrast to the fact that direct SmI2-promoted reaction
Acknowledgements
of phthalimides with ketones did not provide any
desired coupling adduct.8 This strategy will find conve-
nient usage and proved to be a superior CꢀC bond
formation method accompanying the desulfurization
reaction.
This work was partially supported by a Grant-in-Aid
(No. 13640530) from the Ministry of Education, Sci-
ence, Sports and Culture of Japan.
In addition to the development of novel tandem reac-
tion described here, we investigated the stereochemistry
of these products, since the stereodefined construction
of threo- or erythro-heterocyclic moieties with a
hydroxyl-containing side chain attracts considerable
attention due to their presence in the framework of
natural products.13
References
1. (a) Girard, P.; Namy, J.-L.; Kagan, H. B. J. Am. Chem.
Soc. 1980, 102, 2693; (b) Namy, J.-L.; Girard, P.; Kagan,
H. B. Nouv. J. Chim. 1977, 1, 5; (c) Kagan, H. B. New. J.
Chem. 1990, 14, 453.
It will particularly be of interest to note that decreasing
the steric bulkiness of the N-substituents as well as
raising the reaction temperature14 up to rt led to an
increase of the erythro-selectivity (from 55:45 to 92:8 as
shown in Table 1) contrary to our previous threo-selec-
tive results8 and the erythro/threo ratio of 3 is essen-
tially independent of the leaving groups. The observed
reverse stereochemical outcome of these reactions can
be explained by consideration using the six-membered
SmI2-chelation models A and B7b containing nitrogen
lone-paired electrons (Fig. 1). In the thermodynamically
stable former the reaction progressed through coupling
of the radical produced by desulfurization with a car-
bonyl compound from the same face of the smaller
N-methyl group and SmI2, avoiding the mutual steric
repulsion between N- and aldehyde-alkyl groups. On
the other hand, the fact that the steric bulkiness of the
N-substituents and raising the reaction temperature
affect the erythro-selectivity reversibly can be ascribed
to the attack of the radical present in the other six-
membered conformational isomer (Model B) on the
carbonyl group, in which the N-larger functions prefer
to be equatorial. In this case coupling reactions resulted
in a decrease of the erythro-selectivity, since the alde-
hyde-alkyl group constituting the chelation structure
could occupy both sides.
2. For recent reviews, see: (a) Kagan, H. B.; Namy, J.-L.;
Girard, P. Tetrahedron 1981, 37 (Supplement No. 1), 175;
(b) Kagan, H. B.; Namy, J.-L. Tetrahedron 1986, 42,
6573; (c) Kagan, H. B.; Sasaki, M.; Collin, J. Pure Appl.
Chem. 1988, 60, 1725; (d) Molander, G. A. Chem. Rev.
1992, 92, 29; (e) Molander, G. A. Org. React. 1994, 46,
211; (f) Molander, G. A.; Harris, C. R. Chem. Rev. 1996,
96, 307; (g) Molander, G. A.; Harris, C. R. Tetrahedron
1998, 54, 3321; (h) Molander, G. A.; Sono, M. Tetra-
hedron 1998, 54, 9289; (i) Mochrouhi, F.; Namy, J.-L.
Tetrahedron 1998, 54, 11111; (j) Krief, A.; Laval, A. M.
Chem. Rev. 1999, 99, 745; (k) Matsuda, F. J. Synth. Org.
Chem. Jpn. 2001, 59, 92.
3. (a) Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron
Lett. 1986, 27, 5763; (b) Fukuzawa, S.; Seki, K.; Tat-
suzawa, M.; Mutoh, K. J. Am. Chem. Soc. 1997, 119,
1482; (c) Mikami, K.; Yamaoka, M. Tetrahedron Lett.
1998, 39, 4501; (d) Riber, D.; Hazell, R.; Skrydstrup, T.
J. Org. Chem. 2001, 65, 5382.
4. (a) Souppe, J.; Namy, J.-L.; Kagan, H. B. Tetrahedron
Lett. 1984, 25, 2869; (b) Mochrouhi, F.; Namy, J.-L.;
Kagan, H. B. Tetrahedron Lett. 1997, 38, 7183.
5. Mochrouhi, F.; Parlea, E.; Namy, J.-L. Eur. J. Org.
Chem. 1998, 2431.
6. (a) Molander, G. A.; McKie, J. A. J. Org. Chem. 1993,
58, 7216; (b) Mochrouhi, F.; Namy, J.-L.; Kagan, H. B.
Synlett 1996, 633.
In conclusion, we have developed synthetically useful
tandem SmI2-mediated desulfurization and reductive
coupling reactions that employ commercially available
reagents. In addition, the success of these reversibly
erythro-selective reactions together with our previous
threo-selective results demonstrates the mechanistically
fascinating duality of the lactam-employed coupling
reactions for controlled carbonꢀcarbon bond forma-
tion. Current efforts to expand the scope of coupling
partners with this method as well as to elucidate the
thermodynamic behavior and detailed mechanism of
the reaction are in progress.
7. (a) Ha, D.-C.; Yun, C.-S.; Yu, E. Tetrahedron Lett. 1996,
37, 2577; (b) Ha, D.-C.; Yun, C.-S.; Lee, Y. J. Org.
Chem. 2000, 65, 621; (c) Farcas, S.; Namy, J.-L. Tetra-
hedron Lett. 2000, 41, 7299; (d) Farcas, S.; Namy, J.-L.
Tetrahedron Lett. 2001, 42, 879.
8. Yoda, H.; Matsuda, K.; Nomura, H.; Takabe, K. Tetra-
hedron Lett. 2000, 41, 1775.
9. (a) Ogawa, A.; Takami, N.; Nanke, T.; Ohya, S.; Hirao,
T. Tetrahedron 1997, 53, 12895; (b) Kikukawa, T.;
Hanamoto, T.; Inanaga, J. Tetrahedron Lett. 1999, 40,
7497; (c) Molander, G. A.; Etter, J. B.; Zinke, P. W. J.
Am. Chem. Soc. 1987, 109, 453; (d) McDonald, C. E.;
Galka, A. M.; Green, A. I.; Keane, J. M.; Kowalchick, J.
E.; Micklitsch, C. M.; Wisnoski, D. D. Tetrahedron Lett.
2001, 42, 163; (e) Yoda, H.; Katoh, H.; Ujihara, Y.;
Takabe, K. Tetrahedron Lett. 2001, 42, 2509; (f) Ricci,
M.; Blakskjaer, P.; Skrydstrup, T. J. Am. Chem. Soc.
2000, 122, 12413 and references cited therein.
O
N
SmI2
O
SmI2
O
O
R
N
CH3
L
H
R
H
(R) (H)
10. (a) Molander, G. A.; Shakya, S. R. J. Org. Chem. 1994,
59, 3445; (b) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.;
Flowers, II, R. A. Tetrahedron Lett. 1998, 39, 4429.
Model A
Model B
Figure 1. Potential stereocontrol elements.