C O M M U N I C A T I O N S
References
(1) (a) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. ReV. 1996,
96, 2563. (b) Klinman, J. P. Chem. ReV. 1996, 96, 2541. (c) Solomon, E.
I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E. Angew. Chem., Int. Ed.
2001, 4570.
(2) Recent reviews: (a) Blackman, A. G.; Tolman, W. B. In Metal-Oxo and
Metal-Peroxo Species in Catalytic Oxidations; Meunier, B., Ed.; Springer-
Verlag: Berlin, 2000; Vol. 97, pp 179-211. (b) Kopf, M.-A.; Karlin, K.
D. In Biomimetic Oxidations Catalyzed by Transition Metal Complexes;
Meunier, B., Ed.; Imperial College Press: London, 2000; pp 309-362.
(c) Schindler, S. Eur. J. Inorg. Chem. 2000, 2311. (d) Mahadevan, V.;
Gebbink, R. J. M. K.; Stack, T. D. P. Curr. Opin. Chem. Biol. 2000, 4,
228. (e) Que, L., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 2002. In
press.
(3) For example, ligand effects on the relative stability of interconverting µ-η2:
η2-peroxo and bis(µ-oxo)dicopper complexes have been explored. See:
(a) Tolman, W. B. Acc. Chem. Res. 1997, 30, 227. (b) Holland, P. L.;
Tolman, W. B. Coord. Chem. ReV. 1999, 190-192, 855. (c) Mahadevan,
V.; Henson, M. J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc.
2000, 122, 10249. (d) Lam, B. M. T.; Halfen, J. A.; Young, V. G., Jr.;
Hagadorn, J. R.; Holland, P. L.; Lledo´s, A.; Cucurull-Sa´nchez, L.; Novoa,
J. J.; Alvarez, S.; Tolman, W. B. Inorg. Chem. 2000, 39, 4059. (e) Pidcock,
E.; DeBeer, S.; Obias, H. V.; Hedman, B.; Hodgson, K. O.; Karlin, K.
D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1870.
Figure 2. Resonance Raman spectra of oxygenated solutions of (a) (3)Cu-
(MeCN) ((λex ) 457.9 nm, THF, 77K) and (b) (2)Cu(MeCN) (λex ) 413
nm, acetone, 77 K). In (a) and (b, bottom) data obtained using 16O2 or 18O2
are denoted by a solid or a dashed line, respectively. The spectrum in (b,
top) was obtained using a mixture of 18O2, 16O18O, and 16O2. The * indicates
a solvent band.
(4) Cu(I) complexes of other â-diketiminates: (a) Dai, X.; Warren, T. H.
Chem. Commun. 2001, 1998. (b) Yokota, S.; Tachi, Y.; Nishiwaki, N.;
Ariga, M.; Itoh, S. Inorg. Chem. 2001, 40, 5316.
(5) A neutral bis(µ-oxo)dicopper complex supported by an iminophosphin-
amide ligand has been reported: Straub, B. F.; Rominger, F.; Hofmann,
P. Chem. Commun. 2000, 1611.
(6) Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inorg. Chem.
1998, 1485.
(br, 200) (Figure S5). This new species is EPR silent and
spectrophotometric titration data showed a Cu:O2 uptake ratio of
1.0(2):1. The resonance Raman spectrum (λex ) 413 nm, acetone,
77 K) contained no O-isotope sensitive peaks in the region typical
for peroxo or bis(µ-oxo)dicopper complexes (550-850 cm-1).
Instead, a peak was observed at 968 cm-1 that shifted by 51 cm-1
when 18O2 was used (Figure 2b, bottom), consistent with an O-O
stretch [∆18O2(calcd) ) 55 cm-1]. When a mixture of 18O2, 16O18O,
and 16O2 (40% 18O, statistical) was used, a single peak was observed
at 943 cm-1 with a line width identical to those of the peaks arising
from 18O2 and 16O2 (Figure 2b, top). Similar UV-vis and Raman
data were obtained for the product of oxygenation of (1)CuMeCN.17
The combined data are consistent with formulation of the inter-
mediates as unprecedented low-coordinate (superoxo)copper(II)
complexes (LCuO2) with symmetric “side-on” (η2) superoxo
ligation.2,18 The vibrational spectral data are similar to those reported
for a structurally characterized Co(η2-O2) compound,19 but differ
from the only available data for a Cu complex20 postulated to
contain an end-on superoxo ligand on the basis of the presence of
two peaks for 16O18O.
(7) (a) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.;
Calabrese, J. C.; Arthur, S. D. Organometallics 1997, 16, 1514. (b) Clegg,
W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. Inorg. Chem. 1998, 37,
2317. (c) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead,
M. M.; Roesky, H. W.; Power, P. P. J. Chem. Soc., Dalton Trans. 2001,
3465.
(8) For synthetic procedures and characterization data, see the Supporting
Information. The procedure used for the synthesis of 3 was adapted from
one kindly provided to us by R. F. Jordan (University of Chicago).
(9) (a) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Chem. Commun. 2001,
1542. (b) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.;
Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc.
2001, 123, 9222.
(10) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270.
(11) Pilbrow, J. R. Transition Ion Electron Paramagnetic Resonance; Clarendon
Press: Oxford, 1990, Chapter 7.
(12) By cyclic voltammetry (MeCN, 0.1 M Bu4NPF6), we observed an
irreversible wave for (1)Cu(MeCN) with Epc ) -294 mV (vs Fc/Fc+)
and reversible waves for the compounds supported by 2 and 3 with E1/2
) -215 and -256 mV, respectively. Rationales for the divergent O2
reactivity that invoke electronic differences are not obvious from these
data.
(13) All of the oxygenated intermediates decay upon warming, as indicated
by bleaching of their spectral features.
(14) Randall, D. W.; DeBeer, S.; Holland, P. L.; Hedman, B.; Hodgson, K.
O.; Tolman, W. B.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11632.
(15) Henson, M. J.; Mukherjee, P.; Root, D. E.; Stack, T. D. P.; Solomon, E.
I. J. Am. Chem. Soc. 1999, 121, 10332.
(16) Holland, P. L.; Cramer, C. J.; Wilkinson, E. C.; Mahapatra, S.; Rodgers,
K. R.; Itoh, S.; Taki, M.; Fukuzumi, S.; Que, L., Jr.; Tolman, W. B. J.
Am. Chem. Soc. 2000, 122, 792.
In sum, despite having identical diisopropylphenyl flanking units,
the different backbone substitution patterns in the ligands 1-3 result
in structural variation among their Cu(I) and Cu(II) complexes and
the formation of divergent intermediates in reactions of their Cu(I)
complexes with O2. These intermediates were identified as (super-
oxo)copper or bis(µ-oxo)dicopper species, the formation of which
depends on the steric encumbrance of the supporting â-diketiminate.
This tuning of the effective steric bulk at the metal center by the
distant backbone substituent arrangement represents a notable ligand
structural influence on biologically relevant Cu(I)/O2 reactivity.21
(17) See Supporting Information. Interestingly, the oxygenation of (1)Cu-
(CH3CN) was significantly slower than those of the complexes supported
by 2 or 3 (to completion in ∼40 min vs s, respectively).
(18) The only superoxocopper complex to be characterized by X-ray diffraction
is reported in: Fujisawa, K.; Tanaka, M.; Moro-oka, Y.; Kitajima, N. J.
Am. Chem. Soc. 1994, 116, 12079. The ν(O-O) value of 1111 cm-1
described in this work is not associated with the title superoxocopper
complex, however (K. Fujisawa, personal communication).
(19) Egan, J. W., Jr.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.;
Theopold, K. H. J. Am. Chem. Soc. 1990, 112, 2445. FTIR: ν(O-O) )
Acknowledgment. We thank the NIH (GM47365) and the NSF
(predoctoral fellowships to N.W.A. and A.M.R.) for funding, and
L. Que, Jr., and J. D. Lipscomb for providing access to their
respective Raman and EPR facilities.
961 (16O2), 937 (16O18O), 908 (18O2) cm-1
.
(20) Chaudhuri, P.; Hess, M.; Weyhermu¨ller, T.; Wieghardt, K. Angew. Chem.,
Int. Ed. 1999, 38, 1095. FTIR: ν(O-O) ) 964 (16O2), 932/942 (16O18O),
909 (18O2) cm-1
.
(21) Conceptually related remote steric effects have been reported. For example,
see (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100,
1169. (b) Dagorne, S.; Jordan, R. F.; Young, V. G., Jr. Organometallics
1999, 18, 4619.
Supporting Information Available: Text giving synthetic proce-
dures and characterization data, Figures S1-S4 (PDF) and X-ray
crystallographic data files, in CIF format. This material is available
JA017820B
9
J. AM. CHEM. SOC. VOL. 124, NO. 10, 2002 2109