714
p
Fig. 5. Normalized SIF KIII=sÃ0 pa vs. normalized
electric displacement DÃ0 4case 1)
piezoelectric and elastic materials, it is not needed to consider the electrical boundary
condition of the crack face, and the fracture criterion is determined only by the SIF. The
numerical results show that the SIF increases with the increase of the normalized crack length
and the thickness ratio of piezoelectric layer to the lower elastic layer. The ratio of the
piezoelectric layer thickness to the upper elastic layer thickness little affects the SIF. The SIF
depends also on the magnitudes and directions of electrical loads.
References
1. Kim, S.J.; Jones, J.D.: Effects of piezo-actuator delamination on the performance of active noise and
vibration control system. J Intelligent Mat Syst Struct 7 41996) 668±676
2. Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astro 3 41976) 671±683
3. Sosa, H.A.; Pak, Y.E.: Three-dimensional eigenfunction analysis of a crack in a piezoelectric material.
Int J Solids Struct 26 41990) 1±15
4. Beom, H.G.; Atluri, S.N.: Near-tip ®elds and intensity factors for interfacial cracks in dissimilar
anisotropic piezoelectric media. Int J Fracture 75 41996) 163±183
5. Chen, Z.-T.; Yu, S.-W.; Karihaloo, B.L.: Antiplane shear problem for a crack between two dissimilar
piezoelectric materials. Int J Fracture 86 41997) L9±L12
6. Narita, F.; Shindo, Y.: Layered piezoelectric medium with interface crack under anti-plane shear. Theor
Appl Fracture Mech 30 41998) 119±126
7. Serridge, M.; Licht, T.R.: Piezoelectric Accelerometers and Vibration Preampli®ers: Theory and
È
Application Handbook. Bruel & Kjaer, 1987
8. Deeg, W.F.: The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D.
Thesis: Stanford University, 1980
9. McMeeking, R.M.: Electrostrictive stresses near crack-like ¯aws. J Appl Math Phys 40 41989) 615±627
10. Pak, Y.E.: Crack extension force in a piezoelectric material. ASME J Appl Mech 57 41990) 647±653
11. Hao, T.H.; Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its
applications. Eng Fracture Mech 47 41994) 793±802
12. Dunn, M.: The effects of crack face boundary conditions on the fracture mechanics of piezoelectric
solids. Eng Fracture Mech 48 41994) 25±39
13. Park, S.B.; Sun, C.T.: Effect of electric ®eld on fracture of piezoelectric ceramic. Int J Fracture 70 41995)
203±216
14. Sosa, H.; Khutoryansky, N.: New developments concerning piezoelectric materials with defects. Int J
Solids Struct 33 41996) 3399±3414
15. Kumar, S.; Singh, R.N.: In¯uence of applied electric ®eld and mechanical boundary condition on the
stress distribution at the crack tip in piezoelectric materials. Mat Sci Eng A231 41997) 1±9
16. Shindo, Y.; Tanaka, K.; Narita, F.: Singular stress and electric ®elds of a piezoelectric ceramic strip with
a ®nite crack under longitudinal shear. Acta Mech 120 41997) 31±45
17. Tiersten, H.F.; Sham, T.-L.: On the necessity of including electrical conductivity in the description of
piezoelectric fracture in real materials. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control
45 41998) 1±3
18. Gao, C.-F.; Fan, W.-X.: A general solution for the crack problem in piezoelectric media with collinear
cracks. Int J Eng Sci 37 41999) 347±363
19. Sneddon, I.N.: Fourier Transforms. pp. 1±48. New York, Toronto, London: McGraw-Hill, 1951
20. Copson, E.T.: On certain dual integral equations. Proc Glasgow Math Association 5 41961) 19±24