Chemistry Letters 2002
35
This work was partially supported by Grants-in-Aid for Sci-
entific Research (Nos. 11166250, 12CE2005 and 13740353) from
Ministry of Education, Culture, Sports, Science, and Technology of
Japan. We thank Central Glass, Shin-Etsu Chemical, and Tosoh
Akzo Co., Ltds. for the generous gifts of tetrafluorosilane,
chlorosilanes, and alkyllithiums, respectively.
Dedicated to Prof. Teruaki Mukaiyama on the occasion of his
70th birthday.
Scheme 2.
References and Notes
presence of elemental tellurium. When the mixture of 2 and
elemental tellurium in C6D6 was heated in a sealed tube at 90 ꢁC for
5 days and then at 75 ꢁC for 25days, the color of the reaction mixture
turned dark green suggesting the formation of silanetellone 11a.
Although the UV/vis spectrum of the reaction mixture in THF
showed absorption maximum at 593 nm assignable to the n-ꢂꢀ
transition of a silanetellone, the 29Si NMR spectrum showed no
signal assignable to the sp2 silicon probably because of the low yield
of 11a.
1For recent reviews, see: a) N. Tokitoh and R. Okazaki, Adv. Organomet.
Chem., 47, 121 (2001). b) R. Okazaki and N. Tokitoh, Acc. Chem. Res.,
33, 625 (2000). c) N. Tokitoh, T. Matsumoto, and R. Okazaki, Bull.
´
Chem. Soc. Jpn., 72, 1665 (1999). d) J. Escudie and H. Ranaivonjatovo,
Adv. Organomet. Chem., 44, 113 (1999). e) N. Tokitoh and R. Okazaki,
in ‘‘The Chemistry of Organic Silicon Compounds, Vol. 2,’’ ed. by Z.
Rap-poport and Y. Apeloig, John Wiley & Sons Ltd., (1998), pp 1063-
1103. f) J. Barrau and G. Rima, Coord. Chem. Rev., 178-180, 593
(1998). g) K. M. Baines and W. G. Stibbs, Adv. Organomet. Chem., 39,
275 (1996).
2
3
a) H. Suzuki, N. Tokitoh, R. Okazaki, S. Nagase, and M. Goto, J. Am.
Chem. Soc., 120, 11096 (1998). b) H. Suzuki, N. Tokitoh, S. Nagase, and
R. Okazaki, J. Am. Chem. Soc., 116, 11578 (1994).
a) N. Tokitoh, T. Matsumoto, K. Manmaru, and R. Okazaki, J. Am.
Chem. Soc., 115, 8855 (1993). b) T. Matsumoto, N. Tokitoh, and R.
Okazaki, Angew. Chem., Int. Ed. Engl., 33, 2316 (1994). c) N. Tokitoh,
T. Matsumoto, and R. Okazaki, J. Am. Chem. Soc., 119, 2337 (1997). d)
T. Matsumoto, N. Tokitoh, and R. Okazaki, J. Am. Chem. Soc., 121,
8811 (1999).
In order to generate 11a more effectively, we developed an-
other useful synthetic method via the overcrowded diaryldili-
thiosilane 13a, which has recently been developed by us as a key
reagent in the synthesis of the first stable silacyclopropabenzene.12
Reaction of 13a, prepared by the exhaustive reduction of
dibromosilane 12a,12a with TeCl2 in THF at À78 ꢁC gave the
expected silanetellone 11a as a green solid (Equation 2). The 29Si
and 125Te NMR spectra of this reaction product in C6D6 showed
characteristic signals in low-field regions (ꢁSi ¼ 171, ꢁTe ¼ 731)
and the UV/vis spectrum (ꢃmax ¼ 593 nm in benzene) was almost
identical with that of the above-mentioned silanetellone formed by
the thermal reaction of 2 with elemental tellurium. It should be
noted that 11a is the first example of a stable silanetellone
spectroscopically identified. The n-ꢂꢀ transisions of silanethione 1
(396 nm in hexane), silaneselone 4 (456 nm in THF) and
silanetellone 11a (593 nm in benzene) are red-shifted in the order
of 1, 4, and 11a as in the case of other heavy ketones series.1b
4
5
M. Saito, N. Tokitoh, and R. Okazaki, J. Am. Chem. Soc., 119, 11124
(1997).
a) R. Okazaki, M. Unno, and N. Inamoto, Chem. Lett., 1987, 2293. b) R.
Okazaki, N. Tokitoh, and T. Matsumoto, in ‘‘Synthetic Methods of
Organometallic and Inorganic Chemistry,’’ ed. by W. A. Herrmann,
Thieme, New York (1996), Vol. 2, pp 260-269.
´
6
7
P. Arya, J. Boyer, F. Carre, R. Corriu, G. Lanneau, J. Lapasset, M.
Perrot, and C. Priou, Angew. Chem., Int. Ed. Engl., 28, 1016 (1989).
a) D. P. Thompson and P. Boudjouk, J. Chem. Soc., Chem. Commun.,
1466 (1987). b) P. Boudjouk, S. R. Bahr, and D. P. Thompson,
Organometallics, 10, 778 (1991). c) P. Jutzi, D. Eikenberg, A. Mohrke,
¨
B. Neumann, and H.-G. Stammler, Organometallics, 15, 753 (1996). d)
P. Jutzi, A. Mohrke, A. Muller, and H. Bogge, Angew. Chem., Int. Ed.
¨
¨
Engl., 28, 1518 (1989). e) P. Jutzi and A. Muhrke, Angew. Chem., Int.
¨
¨
Ed. Engl., 28, 762 (1989).
8
9
T. Sadahiro, Master Thesis, The University of Tokyo, Japan, 1998.
5: 1H NMR (C6D6, 500 MHz) ꢁ 0.19 (s, 18H), 0.20 (s, 18H), 0.29 (s,
18H), 1.21 (d, J ¼ 6:8 Hz, 6H), 1.32 (d, J ¼ 6:8 Hz, 6H), 1.51 (s, 1H),
2.89 (br s, 1H), 3.37 (br s, 1H), 3.97 (sept, J ¼ 6:8 Hz, 2H), 6.60 (s, 1H),
6.73 (s, 1H), 7.11 (d, J ¼ 7:8 Hz, 2H), 7.20 (t, J ¼ 7:8 Hz, 1H); 13C
NMR (C6D6, 68 MHz) ꢁ 1.2 (q), 2.0 (q), 2.1 (q), 23.1 (q), 27.6 (d), 27.9
(q), 28.0 (d), 31.3 (d), 36.6 (d), 122.7 (s), 124.4 (d  2), 129.7 (d), 131.1
(d), 136.5 (s), 146.3 (s), 153.6 (s), 154.0 (s), 154.3 (s); 29Si NMR (C6D6,
99 MHz) ꢁ À44:3, 2.3, 2.8, 3.3; 77Se NMR (C6D6, 51MHz) ꢁ À174.
The successful synthesis of 11a here described naturally
prompted us to apply this methodology to the synthesis of other
heavy ketones, and as an example we have examined the synthesis
of a stable germanetellone via the corresponding dilithiogermane
intermediate. Thus, dilithiogermane 13b,13 derived from dibromo-
germane 12b by the exhaustive reduction with lithium naphthale-
nide, was allowed to react with TeCl2 in THF at À60 ꢁC to give the
corresponding germanetellone 11b quantitatively (Equation 2).14
The 125Te NMR chemical shift (1194 ppm in C6D6) for 11b is
almost similar to that of Tbt(Tip)Ge¼Te (ꢁTe ¼ 1143 ppm in
C6D6), which was reported as the first example of a stable
diarylgermanetellone.3c
In summary, we have succeeded in the synthesis and spectro-
scopic characterization of kinetically stabilized silaneselone 4 and
silanetellone 11a. The isolation of the newly obtained heavy
ketones as crystals and their crystallographic analysis are currently
in progress.
10 H. Yoshida, Y. Kabe, and W. Ando, Organometallics, 10, 27 (1991).
11 J. G. Grasselli, ‘‘Atlas of Spectral Data and Physical Constants for
Organic Compounds,’’ CRS Press, Cleveland (1973).
12 a) N. Tokitoh, K. Hatano, T. Sadahiro, and R. Okazaki, Chem. Lett.,
1999, 931. b) K. Hatano, N. Tokitoh, N. Takagi, and S. Nagase, J. Am.
Chem. Soc., 122, 4829 (2000).
13 N. Tokitoh and K. Hatano, unpublished results.
14 11b: 1H NMR (C6D6, 400 MHz) ꢁ 0.14 (s, 18H), 0.19 (s, 18H), 0.24 (s,
18H), 1.28 (d, J ¼ 6:5 Hz, 6H), 1.36 (d, J ¼ 6:5 Hz, 6H), 1.48 (s, 1H),
3.48 (br s, 1H), 3.63 (sept, J ¼ 6:5 Hz, 2H), 3.87 (br s, 1H), 6.48 (br s,
1H), 6.64 br (s, 1H), 6.99 (d, J ¼ 7:8 Hz, 2H), 7.20 (t, J ¼ 7:8 Hz, 1H);
13C NMR (C6D6, 100 MHz) ꢁ 1.5 (q), 2.2 (q), 2.5 (q), 22.5 (q), 27.1 (q),
28.6 (d), 28.9 (d), 32.3 (d), 34.9 (d), 125.3 (d  2), 130.5 (d), 131.0 (d),
146.6 (s), 147.1 (s), 148.9 (s), 149.4 (s), 150.1 (s), 157.8 (s); 125Te NMR
(C6D6, 95 MHz) ꢁ 1194.