P. Merino et al. / Tetrahedron Letters 43 (2002) 459–462
461
O
O
O
ii
i
O
O
O
CO2Me
NHBoc
12a
OR
OR
NHBoc
(for R=Bn)
70%
90-94%
N(OH)Bn
Cl
OH
OH
4a R = MOM
R = Bn
10a R = MOM
R = Bn
11a
HO
5a
NH3
13
O
O
O
ii
i
O
O
O
CO2Me
OR
N(OH)Bn
OR
NHBoc
(for R=Bn)
72%
88/95%
NHBoc
4b R = MOM
R = Bn
10b R = MOM
R = Bn
11b
12b
5b
Scheme 3. Reagents and conditions: (i) H2, Pd(OH)2-C, MeOH, Boc2O, rt, 1500 psi, 24 h; (ii) (1) Na, NH3(l); (2) RuO2, NaIO4,
CH3CN:CCl4:H2O, then CH2N2, Et2O.
complete deprotection (10% HCl–MeOH, 10°C, 6 h) of
10b into the hydrochloride 13. This compound showed
the same physical and spectroscopic properties (except
for the sign of the optical rotation) that those described
for its enantiomer,11 thus also confirming the assigned
stereochemistry to hydroxylamines 4.
4. R2=MOM: (a) Danheiser, R. L.; Romines, K. R.;
Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R.
Org. Synth. 1992, 71, 133–139; (b) Johnson, C. R.;
Medich, J. R.; Danheiser, R. L.; Romines, K. R.;
Koyama, H.; Gee, S. K. Org. Synth. 1992, 71, 140–145.
R2=Bn: Still, W. C. J. Am. Chem. Soc. 1978, 100,
1481–1486.
5. Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Tetra-
hedron: Asymmetry 1997, 8, 3489–3496.
6. Selected data (solvent for optical rotations: CHCl3) for
4a: [h]2D0=+6 (c 0.40); 4b: [h]D20=−24 (c 0.31); 5a: [h]2D0=
+2 (c 0.33); 5b: [h]D20=−8 (c 0.29); 6a: [h]2D0=−14 (c 0.76);
6b: [h]2D0=−16 (c 0.52); 7a: [h]D20=−7 (c 0.34); 7b: [h]2D0=
−4 (c 0.20).
The present method provides a convenient asymmetric
synthesis of either diastereoisomer of differentially pro-
tected ABTs desired by choosing the appropriate Lewis
acid. Throughout this study, we also showed that ABTs
are also an effective entry to b-hydroxy-a-aminoacids.
Applications of this methodology for the synthesis of
biologically interesting nitrogenated compounds are
under investigation.
7. Treatment of acetone solutions of hydroxylamines 6 and
7
with catalytic amounts of p-toluensulfonic acid
afforded, after 8 h, the corresponding hydroxylamines 4
and 5, in ca. 80% yield.
8. (a) Schade, W.; Reissig, H.-U. Synlett 1999, 632–634; (b)
Fiumana, A.; Lombardo, M.; Trombini, C. Tetrahedron
1997, 53, 11721–11730.
Acknowledgements
Financial support was provided by Ministerio de Cien-
cia y Tecnologia (Madrid, Spain. Project PB97-1014)
and Diputacion General de Aragon (Zaragoza, Spain,
project PO79/99-C).
9. Data for 10a: [h]2D0=+7 (c 0.39, CHCl3); 1H NMR
(CDCl3, 300 MHz, 328 K) l 1.32 (s, 3H), 1.41 (s, 3H),
1.43 (s, 9H), 3.34 (s, 3H), 3.54 (dd, 1H, J=7.3, 9.8 Hz),
3.58 (dd, 1H, J=5.4, 9.8 Hz), 3.72 (dd, 1H, J=6.8, 8.0
Hz), 3.81 (m, 1H), 4.00 (dd, 1H, J=6.5, 8.0 Hz), 4.32 (dt,
1H, J=2.4, 6.5 Hz), 4.60 (s, 2H), 4.74 (bs, 1H). 13C
NMR (CDCl3, 75.5 MHz, 328 K) l 25.0, 26.3, 28.3, 50.3,
55.3, 66.1, 67.5, 74.1, 79.7, 96.5, 109.4, 154.8. Compound
10b: [h]2D0=+3 (c 0.45, CHCl3); 1H NMR (CDCl3, 300
MHz, 328 K) l 1.30 (s, 3H), 1.37 (s, 3H), 1.41 (s, 9H),
3.33 (s, 3H), 3.58 (m, 1H), 3.76 (m, 2H), 3.88 (dd, 1H,
J=6.4, 8.5 Hz), 3.99 (dd, 1H, J=5.3, 8.5 Hz), 4.08 (dt,
1H, J=5.9, 7.3 Hz), 4.58 (s, 2H), 4.82 (bs, 1H). 13C
NMR (CDCl3, 75.5 MHz, 328 K) l 25.4, 26.6, 28.3, 52.9,
55.2, 67.1 (2C), 75.4, 79.5, 96.8, 109.3, 155.5. Compound
11a: [h]2D0=+2 (c 0.51, CHCl3); 1H NMR (CDCl3, 300
MHz, 328 K) l 1.33 (s, 3H), 1.40 (s, 3H), 1.42 (s, 9H),
3.49 (t, 1H, J=9.1 Hz), 3.54 (dd, 1H, J=5.9, 9.3 Hz),
3.72 (dd, 1H, J=7.3, 8.1 Hz), 3.88 (m, 1H), 3.99 (dd, 1H,
J=6.4, 8.1 Hz), 4.36 (dt, 1H, J=2.4, 6.8 Hz), 4.50 (d,
1H, J=11.7 Hz), 4.54 (d, 1H, J=11.7 Hz), 4.80 (bd, 1H,
J=8.8 Hz), 7.28 (m, 5H). 13C NMR (CDCl3, 75.5 MHz,
328 K) l 25.0, 26.3, 28.3, 50.3, 66.2, 70.0, 73.1, 74.2, 79.6,
References
1. For a complete list of references concerning preparation
and synthetic applications of ABTs see: Inaba, T.;
Yamada, Y.; Abe, H.; Sagawa, S.; Cho, H. J. Org. Chem.
2000, 65, 1623–1628 and references cited therein. During
the preparation of this manuscript Kwon and Ko
reported the stereoselective preparation of (2S,3S)-2-
amino-1,3,4-butanetriol, see: Kwon, S. J.; Ko, S. Y. J.
Org. Chem. 2001, 66, 6833–6835.
2. (a) Delle Monache, G.; Misiti, D.; Zappia, G. Tetra-
hedron: Asymmetry 1999, 10, 2961–2973; (b) Fadnavis, N.
W.; Sharfuddin, M.; Vadivel, S. K. Tetrahedron: Asym-
metry 2001, 11, 691–693.
3. For an account, see: Merino, P.; Franco, S.; Merchan, F.
L.; Tejero, T. Synlett 2000, 442–454.