J . Org. Chem. 2002, 67, 1905-1909
1905
Syn th esis of 2,3-Disu bstitu ted Ben zo[b]th iop h en es via
P a lla d iu m -Ca ta lyzed Cou p lin g a n d Electr op h ilic Cycliza tion of
Ter m in a l Acetylen es
Dawei Yue and Richard C. Larock*
Department of Chemistry, Iowa State University, Ames, Iowa 50011
larock@iastate.edu
Received October 22, 2001
2,3-Disubstituted benzo[b]thiophenes have been prepared in excellent yields via coupling of terminal
acetylenes with commercially available o-iodothioanisole in the presence of a palladium catalyst
and subsequent electrophilic cyclization of the resulting o-(1-alkynyl)thioanisole derivatives. I2,
Br2, NBS, p-O2NC6H4SCl, and PhSeCl have been utilized as electrophiles. Aryl-, vinyl-, and alkyl-
substituted terminal acetylenes undergo this coupling and cyclization to produce excellent yields
of benzo[b]thiophenes. (Trimethylsilyl)acetylene also undergoes this coupling/cyclization process
with I2, NBS, and the sulfur and selenium electrophiles to afford the corresponding 2-(trimethylsilyl)-
benzo[b]thiophenes. However, cyclization of the silyl-containing thioanisole using Br2 affords 2,3-
dibromobenzo[b]thiophene.
In tr od u ction
The transition-metal-catalyzed cyclization of disubsti-
tuted alkynes possessing a nucleophile in proximity to
the triple bond by either copper or palladium reagents
has been shown to be extremely effective for the synthesis
of a wide variety of carbo- and heterocycles (eq 1).1
F igu r e 1. Diaminobenzothiophene.
such as 1 have been identified as active site directed
thrombin inhibitors.5 Thus, research directed toward
concise, new syntheses of 2,3-disubstituted benzo[b]-
thiophenes has been actively pursued in recent years.1,6
The electrophilic cyclization of unsaturated compounds
has proven to be an efficient method for constructing
heterocycles.7 These reactions are generally viewed as
proceeding through an intramolecular, stepwise electro-
philic addition and dealkylation mechanism involving a
Generally, this methodology requires a good leaving
group on the nucleophile. However, due to sulfur’s affinity
for transition metals, sulfur-containing heterocycles, such
as benzo[b]thiophenes, have never been synthesized
using this strategy.
Benzo[b]thiophenes are of interest, because of their
frequent occurrence in nature and their wide range of
biological and physiological effects.2 Benzo[b]thiophene
derivatives, which are antimitotic agents,3 estrogen
receptor antagonists, and antitumor, antiinflammation,
and antifungal agents,4 are currently in pharmaceutical
use or development. Diaminobenzothiophene derivatives
(4) (a) Magarian, R. A.; Overacre, L. B.; Singh, S.; Meyer, K. L. Curr.
Med. Chem. 1994, 1, 61. (b) Bryant, H. U.; Dere, W. H. Proc. Soc. Exp.
Biol. Med. 1998, 217, 45. (c) Flynn, B. L.; Verdier-Pinard, P.; Hamel,
E. Org. Lett. 2001, 5, 651.
(5) (a) Su, T.; Naughton, M. A. H.; Smyth, M. S.; Rose, J . W.; Arfsten,
A. E.; McCowan, J . R.; J akubowski, J . A.; Wyss, V. L.; Ruterbories, K.
J .; Sall, D. J .; Scarborough, R. M. J . Med. Chem. 1997, 40, 4308. (b)
Takeuchi, K.; Kohn, T. J .; Bastian, J . A.; Chirgadze, N. Y.; Denney,
M. L.; Harper, R. W.; Lin, H.; Mccowan, J . R.; Gifford-Moore, D. S.;
Richett, M. E.; Sall, D. J .; Smith, G. F.; Zhang, M. Bioorg. Med. Chem.
Lett. 1999, 9, 759. (c) Sall, D. J .; Bastian, J . A.; Briggs, S. L.; Buben,
J . A.; Chirgadze, N. Y.; Clawson, D. K.; Denney, M. L.; Giera, D. D.;
Gifford-Moore, D. S.; Harper, R. W.; Hauser, K. L.; Klimkowski, V. J .;
Kohn, T. J .; Lin, H.; McCowan, J . R.; Palkowitz, A. D.; Smith, G. F.;
Takeuchi, K.; Thrasher, K. J .; Tinsley, J . M.; Utterback, B. G.; Yan,
S. B.; Zhang, M. J . Med. Chem. 1997, 40, 3489.
(6) (a) Tony, Y. Z.; O′Toole, J .; Proctor, C. S. Sulfur Rep. 1999, 22,
1. (b) Pelkey, E. T. Prog. Heterocycl. Chem. 1999, 11, 102. (c) Bianchini,
C.; Meli, A. Synlett 1997, 643. (d) Russell, R. K.; Press, J . B. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Elsevier: Amsterdam, 1996, Vol. 2, p 679.
(e) Irie, M.; Uchida, K. Bull. Chem. Soc. J pn. 1998, 71, 985. (f)
Gallagher, T.; Pardoe, D. A.; Porter, R. A. Tetrahedron Lett. 2000, 41,
5415. (g) Arnau, N.; Moreno-Manas, M.; Pleixats, R. Tetrahedron 1993,
49, 11019. (h) McDonald, F. E.; Burova, S. A.; Huffman, L. G. J r.
Synthesis 2000, 970.
(1) (a) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 4, 553. (b) Nan,
Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297. (c) Larock, R. C.; Yum,
E. K. J . Am. Chem. Soc. 1991, 113, 6689. (d) Larock, R. C.; Yum, E.
K.; Refvik, M. D. J . Org. Chem. 1998, 63, 7652. (e) Roesch, K. R.;
Larock, R. C. J . Org. Chem. 1998, 63, 5306. (f) Cacchi, S.; Fabrizi, G.;
Moro, L. Tetrahedron Lett. 1998, 39, 5101. (g) Cacchi, S.; Fabrizi, G.;
Moro, L. Synlett 1998, 741. (h) Arcadi, A.; Cacchi, S.; Rosario, M. D.;
Fabrizi, G.; Marinelli, F. J . Org. Chem. 1996, 61, 9280. (i) Cacchi, S.;
Carnicelli, V.; Marinelli, F. J . Organomet. Chem. 1994, 475, 289. (j)
Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1992, 33, 3915.
(k) Cacchi, S. J . Organomet. Chem. 1999, 576, 42.
(2) Bradley, D. A.; Godfrey, A. G.; Schmid, C. R. Tetrahedron Lett.
1999, 40, 5155.
(3) (a) Pinny, K. G.; Bounds, A. D.; Dubgenab, K. M.; Mocharla, V.
P.; Pettit, G. R.; Bai, R.; Hamel, E. Bioorg. Med. Chem. Lett. 1999, 9,
1081. (b) Pinny, K. G.; Pettit, G. R.; Mocharla, V. P.; Del, P. M.; Shirali,
A. PCT Int. Appl. WO 98 39 323; Chem. Abstr. 1998, 129, 245037c.
(7) Ren, X.-F.; Turos, E. Tetrahedron Lett. 1993, 34, 1575.
10.1021/jo011016q CCC: $22.00 © 2002 American Chemical Society
Published on Web 02/26/2002