10.1002/ejoc.201800863
European Journal of Organic Chemistry
FULL PAPER
General procedure for carbene insertion into O-H bonds
[6]
(a) H. F. Srour, P. Le Maux, S. Chevance, D. Carrié, N. Le Yondre, G.
Simonneaux, J. Mol. Catal. A: Chemical 2015, 407, 194-203. (b) D.
Gillingham, N. Fei, Chem. Soc. Rev. 2013, 42, 4918-4931.
M. A. Honey, A. J. Blake, I. B. Campbell, B. D. Judkins, C. J. Moody,
Tetrahedron 2009, 65, 8995-9001.
In a standard experiment, to a solution of complex 1 (10 mg, 0.015 mmol)
and alcohol or phenol (3.75 mmol) in dichloromethane (8 ml) at room
temperature and under inert atmosphere, ethyl diazoacetate (EDA) (160
[7]
[8]
[9]
A. R. Hughes, S. P. Thompson, L. Alcaraz, C. J. Moody, J. Am. Chem.
Soc. 2005, 127, 15644-15651.
μL, 1.50 mmol) was added dropwise over
a period of 12 h
(Cu:EDA:alcohol molar ratio 1:100:250). The consumption of EDA was
monitored by infrared spectroscopy (νN≡N, 2109 cm-1). After complete
conversion of EDA, the distribution of products was determined by GC-
MS analysis of the bulk using hexamethylbenzene as internal standard.
In selected cases, products were isolated after removal of the solvent
and column chromatography (hexane:diethylether = 20:1). Their collected
analytical data were in agreement to those reported in the literature.
O. I. van den Boomen, R. G. E. Coumans, N. Akeroyd, T. P. J. Peters,
P. P. J. Schlebos, J. Smits, R. de Gelder, J. A. A. W. Elemans, R. J. M.
Nolte, A. E. Rowan, Tetrahedron 2017, 73, 5029-5037.
[10] D. Huang, G. Xu, S. Peng, J. Sun, Chem. Commun. 2017, 53, 3197-
3200.
[11] M. R. Fructos, T. R. Belderrain, M. C. Nicasio, S. P. Nolan, H. Kaur, M.
M. Díaz-Requejo, P. J. Pérez, J. Am. Chem. Soc. 2004, 126, 10846-
10847.
General procedure for carbene insertion into N-H bonds
[12] T. Rasmussen, J. F. Jensen, N. Østergaard, D. Tanner, T. Ziegler, P.
Norrby, Chem. Eur. J. 2002, 8, 177-184.
In a standard experiment, to a solution of complex 1 (10 mg, 0.015 mmol)
and the amine (3.75 mmol) in dichloromethane (8 ml) at room
temperature and under inert atmosphere, ethyl diazoacetate (EDA) (160
[13] Q. Meng, M. Li, J. Mol. Struct.: THEOCHEM 2006, 765, 13-20.
[14] J. A. S. Howell, Dalton Trans. 2006, 545-553.
[15] Q. Meng, M. Li, D. Tang, W. Shen, J. Zhang, J. Mol. Struct.:
THEOCHEM 2004, 711, 193-199.
μL, 1.50 mmol) was added dropwise over
a period of 12 h
(Cu:EDA:amine molar ratio 1:100:250). The consumption of EDA was
monitored by infrared spectroscopy (νN≡N, 2109 cm-1). After complete
conversion of EDA, yield was determined by GC-MS analysis of the bulk
using hexamethylbenzene as internal standard. In selected cases,
products were isolated after removal of the solvent and column
chromatography (hexane:diethylether = 20:1). Their collected analytical
data were in agreement to those reported in the literature.
[16] H. Fritschi, U. Leutenegger, A. Pfaltz, Helv. Chim. Acta 1988, 71, 1553-
1565.
[17] B. Liu, S-F. Zhu, L-X. Wang, Q-L. Zhou, Tetrahedron: Asymmetry 2006,
17, 634-641.
[18] G. Chelucci, R. P. Thummel, Chem. Rev. 2002, 102, 3129-3170.
[19] M. M. Diaz-Requejo, A. Caballero, T. R. Belderrain, M. C. Nicasio, S.
Trofimenko, P. J. Perez, J. Am. Chem. Soc. 2002, 124, 978-983.
[20] L. Beaufort, A. Demonceau, A. F. Noels, Tetrahedron 2005, 61, 9025-
9030.
Synthesis of Methyl-2-diazo-2-phenylacetate (MDPA)[44]
[21] J. Pérez, D. Morales, L. A. García-Escudero, H. Martínez-García, D.
Miguel, P. Bernad, Dalton Trans. 2009, 375-382.
In a two-neck 100 mL flask, methyl phenylacetate (4.5 g, 29.96 mmol)
and p-Toluenesufonyl azide (9.1 g, 46.14 mmol) were dissolved in 80
mL of deoxygenated acetonitrile. The solution was cooled to 0°C, then
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (9 mL, 60.45 mmol) was
slowly dropped into the solution while keeping the temperature at 0°C.
The solution gradually turned orange, then it was stirred at room
temperature overnight. The solvent was evaporated, the residue was
dissolved in CH2Cl2 (60 mL) and washed with a saturated water solution
of NH4Cl (40 mL). The organic phase was separated, dried over Na2SO4,
filtered and the solvent was removed under reduced pressure. The crude
residue was purified by column chromatography on silica gel (1:3
hexane:dichloromethane) leading to an orange oil (yield 65%). The
product was stored at -20°C. IR (nujol): νN≡N 2088 cm-1, νCO 1703 cm-1.
1H NMR (400 MHz, CDCl3, RT): δ= 3.88 (s, 3H, OCH3), 7.20 (dt, 1H, 3J =
4.6 Hz, 4J = 0.5 Hz, CHarom), 7.40 (dt, 2H, 3J = 4.6 Hz, 4J = 0.4 Hz,
CHarom), 7.50 (dd, 2H, 3J = 5.3 Hz, 4J = 0.6 Hz, CHarom).
[22] P. Le Maux, D. Carrié, P. Jéhan, G. Simonneaux, Tetrahedron 2016, 72,
4671-4675.
[23] A. Pereira, Y. Champouret, C. Martín, E. Álvarez, M. Etienne, T. R.
Belderraín, P. J. Pérez, Chem. Eur. J. 2015, 21, 9769-9775.
[24] K. Ramakrishna, C. Sivasankar, J. Organomet. Chem. 2016, 805, 122-
129.
[25] K. Ramakrishna, C. Sivasankar, J. Org. Chem. 2016, 81, 6609-6616.
[26] K. Ramakrishna, M. Murali, C. Sivasankar, Org. Lett. 2015, 17, 3814-
3817.
[27] M. Á. Fuentes, E. Álvarez, A. Caballero, P. J. Pérez, Organometallics
2012, 31, 959-965.
[28] G. A. Ardizzoia, S. Brenna, S. Durini, B. Therrien, Organometallics
2012, 31, 5427-5437.
[29] A. Maspero, S. Brenna, S. Galli, A. Penoni, J. Organomet. Chem. 2003,
672, 123-129.
[30] G. A. Ardizzoia, S. Brenna, F. Castelli, S. Galli, C. Marelli, A. Maspero,
J. Organomet. Chem. 2008, 693, 1870-1876.
[31] G. A. Ardizzoia, S. Brenna, F. Castelli, S. Galli, Inorg. Chim. Acta 2009,
362, 3507-3512.
Acknowledgements
[32] S. Durini, G. A. Ardizzoia, G. Colombo, B. Therrien, S. Brenna,
Polyhedron 2018, 139, 189-195.
This work was partially supported by the Ministero dell’Università
e della Ricerca (MIUR) and the University of Insubria (grant
CSR-12).
[33] R. Ahuja, A. G. Samuelson, J. Organomet. Chem. 2009, 694, 1153-
1160.
[34] M. P. Doyle, W. Hu, J. Org. Chem. 2000, 65, 8839-8847.
[35] M. Itagaki, K. Hagiya, M. Kamitamari, K. Masumoto, K. Suenobu, Y.
Yamamoto, Tetrahedron 2004, 60, 7835-7843.
Keywords: homogeneous catalysis • cyclopropanation •
carbene insertion • copper • phosphine
[36] M. Itagaki, K. Masumoto, K. Suenobu, Y. Yamamoto, Org. Proc. Res.
Devel.2006, 10, 245-250.
[37] S-F. Zhu, B. Xu, G-P. Wang, Q-L. Zhou, J. Am. Chem. Soc. 2012, 134,
436-442 and references therein.
[1]
[2]
M. P. Doyle, A. McKervey, T. Ye in Modern Catalytic Methods for
Organic Synthesis with Diazo compounds: From Cyclopropanes to
Ylides, Wiley Ed., Chichester (1998).
[38] T. C. Maier, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 4594-4595.
[39] T. Osako, D. Panichakul, Y. Uozumi, Org. Lett. 2012, 14, 194-197.
[40] Y. Liu, Z. Yu, J. Z. Zhang, L. Liu, F. Xia, J. Zhang, Chem. Sci. 2016, 7,
1988-1995.
I. Nicolas, P. Le Maux, G. Simonneaux, Coord. Chem. Rev. 2008, 252,
727-735.
[3]
[4]
[5]
S-F. Zhu, QL. Zhou, Acc. Chem. Res. 2012, 45, 1365-1377.
L. Liu, J. Zhang, Chem. Soc. Rev. 2016, 45, 506-516.
H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko, T. Hudlicky,
Chem. Rev. 1989, 89 165-198.
[41] Z. Yu, B. Ma, M. Chen, H.-H. Wu, L. Liu, J. Zhang, J. Am. Chem. Soc.
2014, 136, 6904-6907.
6
This article is protected by copyright. All rights reserved.