tion reaction by treatment with KOH and water in
alcoholic solvent.12 It was also found that 5H-indazolo-
[3,2-b]benzo[d][1,3]-oxazines can be obtained in a one-pot
reaction starting with o-nitrobenzaldehyde.12e We envi-
saged that these methods (Scheme 1a/b) could be extended
to the synthesis of a variety of novel heterocyclic analogs
by, for example, introduction of a nitrogen atom in the
benzo ring of 2H-indazoles or in any of the rings fused to
this benzo ring (Scheme 1c). Indeed, a host of unique
heterocycles can be envisioned in which the pyrazole ring
is the common denominator and we report here that a
number of benzo-1,3-dioxolo-, benzothiazolo-, pyrido-,
quinolino-fused 5H-benzo[d]-pyrazolo[5,1-b]-[1,3]-oxa-
zines and 1H-pyrazoles are accessible in moderate to high
yields (35-88%) via this N,N-bond forming heterocycliza-
tion reaction.
Figure 1. Pyrazolopyridine and 4-(pyrazol-4-yl)pyrimidines
inhibitors.
compared to indoles and indazoles exhibiting protein
kinase B/Akt inhibitory activities7,4 and, more recently,
4-(pyrazol-4-yl)pyrimidines have been shown to selectively
inhibit CDK4/6 (Figure 1).8
The benzo-1,3-oxazine ring system has also been shown
to exhibit antihypertensive affects,9 potency as antirheu-
matic agents,10 and antianginal acitivity.11 In contrast,
heterocycle-fused 5H-benzo[d]pyrazolo[5,1-b][1,3]-ox-
azines, to the best of our knowledge, are unknown. This,
together with the biological potential and intriguing struc-
tures of these compounds, prompted us to study the
synthesis of this novel class of heterocycles.
Scheme 2. Synthesis of o-Nitroarylmethylaminesa
a Method A: R1NH2 þ acetic acid in MeOH; then NaBH3CN/
MeOH. Method B: R1NH2 (excess) in refluxing MeOH.
Scheme 1. Synthetic Routes to Benzo-Fused [(a) and (b)] and
Heterocycle-Fused (c) Pyrazoles
Scheme 2 demonstrates that o-nitroheterocyclic amine 3
can be accessed from either o-nitroheterocyclic aldehydes
(1; Method A) or o-nitroheterocyclic halides (2; Method
B). In Method A, the targeted o-nitroarylmethylamine 3 is
obtained in nearly quantitative yield by utilizing an excess
of amine. Moreover, the resulting o-nitroarylmethylamine
generally does not require purification and crude 3 can be
used directly in the subsequent heterocyclization with no
significiant loss in yield or complication in product isola-
tion/purification. In Method B, the starting o-nitroheter-
ocyclic halide 2 is prepared in low yield (benzylic
bromination; 30-40%) making this a generally less effec-
tive route to o-nitroarylmethylamine 3.
All o-nitroheterocyclic aldehydes (4a-e, Scheme 3) ex-
cept for 4e, which was commercially available, were
synthesized according to literature procedures.13 Our tar-
geting of heterocycle-fused pyrazoles started with treat-
ment of the specific o-nitroheterocyclic aldehyde 4 with
2-aminobenzyl alcohol or p-bromoaniline followed by
reduction of the resulting anil with NaBH3CN to obtain
the o-nitroheterocyclic amine 3 (Scheme 3).
We have previously demonstrated that 3-alkoxy-2H-
indazoles (Scheme 1a) and 5H-indazolo[3,2-b]benzo[d]-
1,3-oxazines (Scheme 1b) can be obtained from o-nitroar-
ylmethylamines via an N,N-bond forming heterocycliza-
(7) Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Woods, K. W.;
Song, X.; Li, T.; Diebold, R. B.; Luo, Y.; Liu, X.; Guan, R.; Klinghofer,
V.; Johnson, E. F.; Bouska, J.; Olson, A.; Marsh, K. C.; Stoll, V. S.;
Mamo, M.; Polakowski, J.; Campbell, T. J.; Martin, R. L.; Gintant,
G. A.; Penning, T. D.; Li, Q.; Rosenberg, S. H.; Giranda, V. L. J. Med.
Chem. 2007, 50, 2990.
(8) Cho, Y. S.; Borland, M.; Brain, C.; Chen, C. H.-T.; Cheng, H.;
Chopra, R.; Chung, K.; Groarke, J.; He, G.; Hou, Y.; Kim, S.; Kovats,
S.; Lu, Y.; O’Reilly, M.; Shen, J.; Smith, T.; Trakshel, G.; Vogtle, M.;
Xu, M.; Sung, M. J. J. Med. Chem. 2010, 53, 7938.
(9) Clark, R. D.; Caroon, J. M.; Kluge, A. F.; Repke, D. B.;
Roszkowski, A. P.; Strosberg, A. M.; Baker, S.; Bitter, S. M.; Okada,
M. D. J. Med. Chem. 1983, 26, 657.
(10) Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.;
Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto, T.; Takeda, Y.; Yano, K.;
Kuroki, T. J. Med. Chem. 1997, 40, 105.
(12) (a) Kurth, M. J.; Olmstead, M. M.; Haddadin, M. J. J. Org.
Chem. 2005, 70, 1060. (b) Mills, A. D.; Nazer, M. Z.; Haddadin, M. J.;
Kurth, M. J. J. Org. Chem. 2006, 71, 2687. (c) Mills, A. D.; Maloney, P.;
Hassanein, E.; Haddadin, M. J.; Kurth, M. J. J. Comb. Chem. 2007, 9,
171. (d) Butler, J. D.; Solano, D. M.; Robins, L. I.; Haddadin, M. J.;
Kurth, M. J. J. Org. Chem. 2008, 73, 234. (e) Solano, D. M.; Butler, J. D.;
Haddadin, M. J.; Kurth, M. J. Org. Synth. 2010, 87, 339.
(13) (a) Niu, C.; Li, J.; Doyle, T. W.; Chen, S.-H. Tetrahedron 1998,
54, 6311. (b) Vetelino, M. G.; Coe, J. W. Tetrahedron Lett. 1994, 35, 219.
(c) Yan, M.-C.; Tu, Z.; Lin, C.; Ko, S.; Hsu, J.; Yao, C.-F. J. Org. Chem.
2004, 69, 1565. (d) Godard, A.; Queguiner, G. J. Heterocycl. Chem.
1980, 17, 465. (e) Couch, G. D.; Knox, R. J.; Moody, C. J. Tetrahedron
2008, 64, 2816.
(11) Benedini, F.; Bertolini, G.; Cereda, R.; Dona, G.; Gromo, G.;
Levi, S.; Mizrahi, J.; Sala, A. J. Med. Chem. 1995, 38, 130.
Org. Lett., Vol. 13, No. 5, 2011
1061