The results above can be rationalized if one considers that
in the absence of chelating agents N-(E)-enoyl-oxazolidin-
2-ones 2 are known to exist in s-trans conformation,9 with
the R3 substituent being pointed away from the CdC bond,
thus exerting little control of the facial selectivity.10 In
contrast, the R1 side-chain of R-amino esters 1 should be
spatially close to the forming stereogenic center in the
transition state; therefore, its influence is much more
important. Reaction time has no effect on the diastereose-
lectivity; in fact 3g was formed with the identical 50% de
after 16 h (ca. 50% conversion) or after 88 h as well (entry
11), as shown by 500 MHz NMR of the crude reaction
mixture. This strongly supports the conclusion that adducts
3 are formed irreversibly, and the stereochemical outcome
is under kinetic control.
Scheme 2
oxazolidinone residue has lower effect on the stereoselec-
tivity. In fact, (S)-configured products 3e (R3 ) iso-Pr, entry
9), 3d (R3 ) Bn, entry 8), and 3f (R3 ) H, entry 10) were
obtained from L-Val-OBn 1c in 78%, 72%, and 65% de
respectively, with little variation and the same sense of facial
selectivity.
It is worth noting that stereocontrol is totally absent in
the 1,4-addition of L-Ala-OMe 1a to methyl 4,4,4-trifluo-
rocrotonate 5, which was chosen initially as the Michael
acceptor (Scheme 3), and the reaction is much slower (1
(4) A conceptually related peptide bond surrogate ψ[CH(CN)NH] has
been reported: (a) Herrero, S.; Sua´rez-Gea, M. L.; Gonza´lez-Mun˜iz, R.;
Garc´ıa-Lo´pez, M. T.; Herranz, R.; Ballaz, S.; Barber, A.; Fortun˜o, A.; Del
R´ıo, J. Bioorg. Med. Chem. Lett. 1997, 7, 855-860. For some recent
examples of fluorine-containing peptidomimetics: (b) Garrett, G. S.;
McPhail, S. J.; Tornheim, K.; Correa, P. E.; McIver, J. M. Bioorg. Med.
Chem. Lett. 1999, 9, 301-306. (c) Poupart, M.-A.; Fazal, G.; Goulet, S.;
Mar, L.-T. J. Org. Chem. 1999, 64, 1356-1361. (d) Eda, M.; Ashimori,
A.; Akahoshi, F.; Yoshimura, T.; Inoue, Y.; Fukaya, C.; Nakajima, M.;
Fukuyama, H.; Imada, T.; Nakamura, N. Bioorg. Med. Chem. Lett. 1998,
8, 919-924 and references therein. (e) Hoffman, R. V.; Tao, J. Tetrahedron
Lett. 1998, 39, 4195-4198. (f) Bartlett, P. A.; Otake, A. J. Org. Chem.
1995, 60, 3107-3111. (g) Boros, L. G.; Decorte, B.; Gimi, R. H.; Welch,
J. T.; Wu, Y.; Handschumacher, R. E. Tetrahedron Lett. 1994, 35, 6033-
6036. (h) Revesz, L.; Briswalter, C.; Heng, R.; Leutwiler, A.; Mueller, R.;
Wuethrich, H.-J. Tetrahedron Lett. 1994, 35, 9693-9696. (i) Robinson, R.
P.; Donahue, K. M. J. Org. Chem. 1992, 57, 7309-7314.
Scheme 3
(5) See for example: Scolnick, L. R.; Clements, A. M.; Liao, J.;
Crenshaw, L.; Hellberg, M.; May, J.; Dean, T. R.; Christianson, D. W. J.
Am. Chem. Soc. 1997, 119, 850-851.
month, rt). This is likely to be a consequence of the lower
conformational rigidity and electrophilicity of 5 with respect
to the oxazolidinone acceptors 2.
(6) (a) Shibuya, A.; Kurishita, M.; Ago, C.; Taguchi, T. Tetrahedron
1996, 52, 271-278. See also: (b) Yamazaki, T.; Shinohara, N.; Kitazume,
T.; Sato, S. J. Fluorine Chem. 1999, 97, 91-96.
(7) This reaction is extraordinarily simple and efficient, if one considers
that examples of 1,4-additions by chiral R-amino esters to 4-substituted
Michael-acceptors are very scarce in the literature: (a) Urbach, H.; Henning,
R. Tetrahedron Lett. 1984, 25, 1143-1146. (b) Eckert, H. G.; Badian, M.
J.; Gantz, D.; Kellner, H.-M-; Volz, M. Arzneim. Forsch. 1984, 34, 1435-
1447. For Michael-type reactions of amines with 4-substituted acceptors:
(c) Burke, A. J.; Davies, S. G.; Hedgecock, C. J. R. Synlett 1996, 621-
622. (d) d′Angelo, J.; Maddaluno, J. J. Am. Chem. Soc. 1986, 108, 8112-
8114. (e) Cardillo, G.; Di Martino, E.; Gentilucci, L.; Tomasini, C.;
Tomasoni, L. Tetrahedron: Asymmetry 1995, 6, 1957-1963. (f) Amoroso,
R.; Cardillo, G.; Sabatino, P.; Tomasini, C.; Trere`, A. J. Org. Chem. 1993,
58, 5615-5619. (g) Baldwin, S. W.; Aube´, J. Tetrahedron Lett. 1987, 28,
179-182. (h) Hirama, M.; Shigemoto, T.; Yamazaki, Y.; Ito, S. J. Am.
Chem. Soc. 1985, 107, 1797-1798. (i) Bunnage, M. E.; Davies, S. G.;
Goodwin, C. J.; Walters, I. A. S. Tetrahedron: Asymmetry 1994, 5, 35-
36. (j) Davies, S. G.; Walters, I. A. S. J. Chem. Soc., Perkin Trans. 1 1994,
1129-1139. (k) Davies, S. G.; Ichihara, O.; Walters, I. A. S. J. Chem.
Soc., Perkin Trans. 1 1994, 1141-1147. (l) Hawkins, J. M.; Lewis, T. A.
J. Org. Chem. 1994, 59, 649-652. (m) Asao, N.; Shimada, T.; Sudo, T.;
Tsukada, N.; Yazawa, K.; Gyoung, Y. S.; Uyehara, T.; Yamamoto, Y. J.
Org. Chem. 1997, 62, 6274-6282. (n) Rudolf, K.; Hawkins, J. M.;
Loncharich, R. J.; Houk, K. N. J. Org. Chem. 1988, 53, 3879-3882. (o)
Hawkins, J. M.; Fu, G. C. J. Org. Chem. 1986, 51, 2820-2822. (p)
Liebeskind, L. S.; Welker, M. E. Tetrahedron Lett. 1985, 26, 3079-3082.
(q) De, A.; Basak, P.; Iqbal, J. Tetrahedron Lett. 1997, 38, 8383-8386. (r)
Yamamoto, Y.; Asao, N.; Uyehara, T. J. Am. Chem. Soc. 1992, 114, 5427-
5429. (s) Dumas, F.; Mezrhab, B.; d’Angelo, J.; Riche, C.; Chiaroni, A. J.
Org. Chem. 1996, 61, 2293-2304. (t) d’Angelo, J.; Maddaluno, J. J. Am.
Chem. Soc. 1986, 108, 8112-8114. (u) Mezrhab, B.; Dumas, F.; d’Angelo,
J.; Riche, C. J. Org. Chem. 1994, 59, 500-503. (v) Cardillo, G.; Casolari,
S.; Gentilucci, L.; Tomasini, C. Angew. Chem., Int. Ed. Engl. 1996, 35,
1848-1849.
With a number of pseudo-dipeptides 3 in hand we
addressed the next issue, namely the chemoselective cleavage
of the oxazolidinone auxiliary. This result was achieved in
55-82% yields upon treatment of 3 with LiOH/H2O2 (30
min, 0 °C) (Scheme 4).11 The resulting pseudodipeptides
having a terminal CO2H group were purified by FC and then
coupled with another R-amino ester (HATU/HOAt, sym-
(8) The stereochemistry of 3a was assigned by X-ray diffraction (X-ray
data will be published in a full-paper), while the stereochemistry of the
other major diastereomers 3b-j was assigned on the basis of their spectral
and chemical-physical similarities with 3a. The stereochemistry of 6,
derived from D-Ala-OMe 1a was determined by chemical correlation with
3a, after cleavage of the oxazolidinone auxiliary.
(9) (a) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988,
110, 1238-1256. (b) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow,
R. L. J. Am. Chem. Soc. 1990, 112, 4011-4030. See also: (c) Soloshonok,
V. A.; Cai, C.; Hruby, V. J. Org. Lett. 2000, 2, 747-750.
(10) The use of Lewis acids for achieving higher stereocontrol via
prechelation of oxazolidin-2-ones 2 was tried with little success. For
example, treatment of 2a with Sc(OTf)3 in CH2Cl2 at rt for 30 min., followed
by addition of L-1c and sym-collidine, produced 3d in 58% de and ca. 85%
yield (determined by 19F NMR of the crude reaction mixture) after 30 h at
rt. For a very recent successful example of use of Sc(OTf)3 in related
reactions: Mero, C. L.; Porter, N. A. J. Org. Chem. 2000, 65, 775-781.
(11) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am.
Chem. Soc. 1990, 112, 4011-4030. Oxazolidin-2-one auxiliaries were
usually recovered in nearly quantitative yields after cleavage.
Org. Lett., Vol. 2, No. 13, 2000
1829