324
J . Org. Chem. 1996, 61, 324-328
Or ga n ic Rea ction s Ca ta lyzed by Meth ylr h en iu m Tr ioxid e:
Deh yd r a tion , Am in a tion , a n d Disp r op or tion a tion of Alcoh ols
Zuolin Zhu and J ames H. Espenson*
Ames Laboratory and Department of Chemistry, Iowa State University, Ames, Iowa 50011
Received September 5, 1995X
Methylrhenium trioxide (MTO) is the first transition metal complex in trace quantity to catalyze
the direct formation of ethers from alcohols. The reactions are independent of the solvents used:
benzene, toluene, dichloromethane, chloroform, acetone, and in the alcohols themselves. Aromatic
alcohols gave better yields than aliphatic. Reactions between two different alcohols could also be
used to prepare unsymmetric ethers, the best yields being obtained when one of the alcohols is
aromatic. MTO also catalyzes the dehydration of alcohols to form olefins at room temperature,
aromatic alcohols proceeding in better yield. When primary (secondary) amines were used as the
limiting reagent, direct amination of alcohols catalyzed by MTO gave good yields of the expected
secondary (tertiary) amines at room temperature. Disproportionation of alcohols to alkanes and
carbonyl compounds was also observed for aromatic alcohols in the presence of MTO. On the basis
of the results of this investigation and a comparison with the interaction between MTO and water,
a concerted process and a mechanism involving carbocation intermediates have been suggested.
In tr od u ction
include heterogeneous and homogeneous reactions with
a stoichiometric amount of dehydrating agent, such as
anhydrous copper(II) sulfate,19 copper(II) sulfate on silica
gel,20 ferric chloride on silica gel,21 SOCl2/NEt3,22 TsOH/
PhH,23 BF3/OEt2,24 Ph3P/CCl4/NEt3,25 or Ph3PBiBr2/I2.26
The method reported here, which uses MTO as a catalyst
for the dehydration of alcohols at room temperature in
dry benzene, is more convenient.
Methylrhenium trioxide (CH3ReO3 or MTO) catalyzes
the epoxidation1 and metathesis2 of olefins, aldehyde
olefination,3 oxygen transfer,4 and the transfer of carbene
and nitrene groups from diazoalkanes and organic azides.5
Many MTO-catalyzed oxidations of hydrogen peroxide
have been reported, including the oxidations of alk-
enes,1,6,7 cobalt thiolates,8 organic sulfides,9 anilines,10
alkynes,11 and phosphines.12 We note this series of
results, not because hydrogen peroxide is in any way
involved with the transformations of alcohols described
in this paper but because the precursors to the rhenium
peroxide intermediates from MTO and H2O2 can reason-
ably be used as models for them.
The dehydration of alcohols provides an important
means of preparing ethers. The Williamson ether syn-
thesis,13 one of the most widely used procedures, calls
for the initial conversion of alcohols to halides or tosy-
lates. Other synthetic methods have been reported, but
they are not without limitations.14-18 The method de-
veloped in this work is a direct one.
Amines are of considerable practical importance, find-
ing use as antioxidants in fuel oils, rubber stabilizers,
medicinal drugs, detergents, and herbicides.27 Generally,
the alcohol used to form an amine must first be converted
to a halide. The direct methods so far reported for the
catalytic amination of alcohols require co-catalysts, such
as these: CuO/γ-Al2O3,28 Al(OBut)3/Raney Ni,29 CuO/
Cr2O3/Na2O/SiO2/H2O,27 RuCl2(PPh3)2/Ph3P,30 and Ph3P+-
NMeC6H4 I-/BunNHMe/DMF.31 We have developed a
simpler procedure in which MTO is the sole catalyst.
Disproportionation of alcohols requires hydride trans-
fer and is usually done with Al2O3 at >300 °C32-34 or over
Another important transformation of alcohols is an
elimination reaction to yield olefins. Known methods
(17) Noda, I.; Horita, K.; Oikawa, Y.; Yonemitsu, O. Tetrahedron
Lett. 1986, 27, 1917.
(18) Kim, S.; Chung, K. N.; Yang, S. J . Org. Chem. 1987, 52, 3917.
(19) Trost, B. M.; Lautens, M.; Peterson, B. Tetrahedron Lett. 1983,
4525.
(20) Nishiguchi, T.; Kamio, C. J . Chem. Soc., Perkin Trans. 1 1989,
707.
(21) Keinan, E.; Mazur, Y. J . Org. Chem. 1978, 43, 1020.
(22) Gaston, J . L.; Grundon, M. F.; J ames, K. J . J . Chem. Soc.,
Perkin Trans. 1 1980, 1136.
(23) Piers, E.; Karunaratne, V. Can. J . Chem. 1989, 160.
(24) Posner, G. H.; Roskes, E. M. S.; Chang, H. O.; Carry, J . C.;
Green, J . V.; Clark, A. B.; Dai, H.; Anjeh, T. E. N. Tetrahedron Lett.
1991, 6489.
(25) Saikia, A. K.; Barua, N. C.; Sharma, R. P.; Ghosh, A. C.
Synthesis 1994, 685.
(26) Dorta, R. L.; Suarez, E.; Betancor, C. Tetrahedron Lett. 1994,
35, 5035.
(27) Baiker, A.; Richarz, W. Tetrahedron Lett. 1977, 18, 1937.
(28) Baiker, A.; Richarz, W. Synth. Commun. 1978, 8, 27.
(29) Botta, M.; Angelis, F. D.; Nicoletti, R. Synthesis 1977, 722.
(30) Watanabe, Y.; Tsuji, Y.; Ohsugi, Y. Tetrahedron Lett. 1981, 22,
2667.
X Abstract published in Advance ACS Abstracts, December 15, 1995.
(1) Herrmann, W. A.; Fischer, R. W.; Rauch, M. U.; Scherer, W. J .
Mol. Catal. 1994, 86, 243.
(2) Herrmann, W. A.; Wagner, W.; Flessner, U. N.; Volkhardt, U.;
Komber, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 1636.
(3) Herrmann, W. A.; Roesky, P. W.; Wang, M.; Scherer, W.
Organometallics 1994, 13, 4531.
(4) Zhu, Z.; Espenson, J . H. J . Mol. Catal. 1995, in press.
(5) Zhu, Z.; Espenson, J . H. Submitted for publication.
(6) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. H.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1157.
(7) Al-Ajlouni, A.; Espenson, J . H. J . Am. Chem. Soc. In press.
(8) Huston, P.; Espenson, J . H.; Bakac, A. Inorg. Chem. 1993, 32,
4517.
(9) Vassell, K. A.; Espenson, J . H. Inorg. Chem. 1994, 33, 5491.
(10) Zhu, Z.; Espenson, J . H. J . Org. Chem. 1995, 60, 1326.
(11) Zhu, Z.; Espenson, J . H. J . Org. Chem. 1955, 60, 7090.
(12) Abu-Omar, M. M.; Espenson, J . H. J . Am. Chem. Soc. 1995,
117, 272.
(13) Barton, D.; Ollis, W. D. Comprehensive Organic Chemistry;
Pergamon: Elmsford, 1979; Vol. 1, p 819.
(14) Curtin, D. Y.; Lescowitz, S. J . Am. Chem. Soc. 1951, 73, 2630.
(15) Traynellis, V. J .; Hergenrother, W. L.; Hanson, H. T.; Valicenti,
J . A. J . Org. Chem. 1964, 29, 123.
(31) Tanigawa, Y.; Murahashi, S. I.; Moritani, I. Tetrahedron Lett.
1975, 16, 2667.
(16) Emert, J .; Goldenberg, M.; Chiu, G. L.; Valeri, A. J . Org. Chem.
1977, 42, 2012.
(32) J ayamani, M.; Pillai, C. N. J . Catal. 1989, 119, 8.
(33) J ayamani, M.; Pillai, C. N. J . Catal. 1983, 82, 485.
0022-3263/96/1961-0324$12.00/0 © 1996 American Chemical Society