K. Kráľová et al./Chemical Papers
vii
Hayat, Q., Hyat, S., Irfan, M., & Ahmad, A. (2010). Effect
of exogenous salicylic acid under changing environment: A
review. Environmental and Experimental Botany, 68, 14–25.
DOI: 10.1016/j.envexpbot.2009.08.005.
Hoff, A. J. (1979). Applications of ESR in photosynthesis.
Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79)90
016-4.
Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic
treatment with salicylic acid decreases the effects of chilling
injury in maize (Zea mays L.) plants. Planta, 208, 175–180.
DOI: 10.1007/s004250050547.
Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis in-
hibition produced by 2-alkylthio-6-R-benzothiazoles. Chem-
ical Papers, 46, 348–350.
Pancheva, T. V., & Popova, L. P. (1998). Effect of salicylic
acid on the synthesis of ribulose-1,5-bisphosphate carboxy-
lase/oxygenase in barley leaves. Journal of Plant Physiology,
152, 381–386. DOI: 10.1016/s0176-1617(98)80251-4.
Popova, L. P., Maslenkova, L. T., Yordanova, R. Y., Ivanova, A.
P., Krantev, A. P., Szalai, G., & Janda, T. (2009). Exogenous
treatment with salicylic acid attenuates cadmium toxicity in
pea seedlings. Plant Physiology and Biochemistry, 47, 224–
231. DOI: 10.1016/j.plaphy.2008.11.007.
Promyou, S., Ketsa, S., & van Doorn, W. G. (2012). Salicylic
acid alleviates chilling injury in anthurium (Anthurium an-
draeanum L.) flowers. Postharvest Biology and Technology,
64, 104–110. DOI: 10.1016/j.postharvbio.2011.10.002.
Renger, G. (1975). The action of 5-chloro-3-tert-butyl-2ꢀ-chloro-
4ꢀ-nitro-salicylanilide and α,αꢀ-bis(hexafluoroacetonyl)ace-
ton on the water-splitting enzyme system Y in spinach
chloroplasts. FEBS Letters, 52, 30–32. DOI: 10.1016/0014-
5793(75)80630-2.
Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998). Inhi-
bition of photosynthetic electron transport by some anilides
of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts.
Chemical Papers, 52, 52–55.
Kráľová, K., Šeršeň, F., Kubicová, L., & Waisser, K. (1999). In-
hibitory effects of substituted benzanilides on photosynthetic
electron transport in spinach chloroplasts. Chemical Papers,
53, 328–331.
Sahu, G. K., Kar, M., & Sabat, S. C. (2002). Electron trans-
port activities of isolated thylakoids from wheat plants grown
in salicylic acid. Plant Biology, 4, 321–328. DOI: 10.1055/s-
2002-32336.
Kráľová, K., Miletín, M., & Doležal, M. (2001). Inhibition of
oxygen evolution rate in freshwater algae Chlorella vulgaris
by some anilides of substituted pyridine-4-carboxylic acids.
Chemical Papers, 55, 251–253.
Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K. (2011).
2-Alkylsulphanyl-4-pyridinecarbothioamides – inhibitors of
oxygen evolution in freshwater alga Chlorella vulgaris. Chem-
ical Papers, 65, 909–912. DOI: 10.2478/s11696-011-0082-6.
Kráľová, K., Šeršeň, F., Peško, M., Klimešová, V., & Waisser, K.
(2012). Photosynthesis-inhibiting effects of 2-benzylsulpha-
nylbenzimidazoles in spinach chloroplasts. Chemical Papers,
66, 795–799. DOI: 10.2478/s11696-012-0192-9.
Kubicová, L., & Waisser, K. (1992). Biological activity of salicy-
lanilides. Československá Farmacie, 41, 208–216. (in Czech)
Kubicová, L., Kráľová, K., Šeršeň, F., Gregor, J., & Waisser, K.
(2000a). Effects of substituted salicylanilides on the photo-
synthetic apparatus in spinach chloroplasts. Folia Pharma-
ceutica Universitatis Carolinae, 25, 89–96.
Kubicová, L., Kissová, K., & Waisser, K. (2000b). Inhibition
of the chlorophyll production in Chlorella vulgaris by substi-
tuted salicylanilides. Folia Pharmaceutica Universitatis Car-
olinae, 25, 67–72.
Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Sali-
cylic acid alleviates decreases in photosynthesis under salt
stress by enhancing nitrogen and sulfur assimilation and an-
tioxidant metabolism differentially in two mungbean cul-
tivars. Journal of Plant Physiology, 168, 807–815. DOI:
10.1016/j.jplph.2010.11.001.
Norrington, F. E., Hyde, R. M., Williams, S. G., & Wotton, R.
(1975). Physiochemical–activity relations in practice. 1. A
rational and self-consistent data bank. Journal of Medicinal
Chemistry, 18, 604–607. DOI: 10.1021/jm00240a016.
Otevřel, J., Mandelová, Z., Peško, M., Guo, J., Kráľová, K.,
Šeršeň, F., Vejsová, M., Kalinowski, D. S., Kovacevic, Z., Cof-
fey, A., Cso¨llei, J., Richardson, D. R., & Jampílek, J. (2010).
Investigating the spectrum of biological activity of ring-
substituted salicylanilides and carbamoylphenylcarbamates.
Molecules, 15, 8122–8142. DOI: 10.3390/molecules15118122.
Pancheva, T. V., Popova, L. P., & Uzunova, A. N. (1996). Ef-
fects of salicylic acid on growth and photosynthesis in bar-
ley plants. Journal of Plant Physiology, 149, 57–63. DOI:
10.1016/s0176-1617(96)80173-8.
Servusová, B., Eibinová, D., Doležal, M., Kubíček, V., Pa-
terová, P., Peško, M., & Kráľová, K. (2012). Substituted
N-benzylpyrazine-2-carboxamides: Synthesis and biological
evaluation. Molecules, 17, 13183–13198. DOI: 10.3390/
molecules171113183.
Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis
of the D1 and D2 reaction center proteins of photosystem II.
Zeitschrift fu¨r Naturforschung C: Journal of Biosciences, 46,
765–776.
Uzunova, A. N.,
& Popova, L. P. (2000). Effect of sal-
icylic acid on leaf anatomy and chloroplast ultrastruc-
ture of barley plants. Photosynthetica, 38, 243–250. DOI:
10.1023/a:1007226116925.
Waisser, K., Hladůvková, J., Gregor, J., Rada, T., Kubicová, L.,
Klimešová, V., & Kaustová, J. (1998). Relationships between
the chemical structure of antimycobacterial substances and
their activity against atypical strains. Part 14: 3-Aryl-6,8-
dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones. Archiv der
Pharmazie, 331, 3–6. DOI: 10.1002/(SICI)1521-4184(199801)
331:1<3::AID-ARDP3>3.3.CO;2-U.
Waisser, K., Hladůvková, J., Kuneš, J., Kubicová, L., Klimešo-
vá, V., Karajannis, P., & Kaustová, J. (2001). Synthesis and
antimycobacterial activity of salicylanilides substituted in
position 5. Chemical Papers, 55, 121–129.
Waisser, K., Bureš, O., Holý, P., Kuneš, J., Oswald, R.,
Jirásková, L., Pour, M., Klimešová, V., Kubicová, L., & Kaus-
tová, J. (2003). Relationship between the structure and an-
timycobacterial activity of substituted salicylanilides. Archiv
der Pharmazie, 336, 53–71. DOI: 10.1002/ardp.200390004.
Williamson, R. L., & Metcalf, R. L. (1967). Salicylanilides:
A
new group of active uncouplers of oxidative phos-
phorylation. Science, 158, 1694–1695. DOI: 10.1126/sci-
ence.158.3809.1694.
Zhang, L., & Li, X. (2012). Exogenous treatment with sali-
cylic acid attenuates ultraviolet-B radiation stress in soy-
bean seedlings. In E. Zhu, & S. Sambath (Eds.), Information
technology and agricultural engineering (Series: Advances in
intelligent and soft computing, Vol. 134, pp. 889–894). Hei-
delberg, Germany: Springer.