16
SILVA ET AL.
metabolites in human urine by high performance liquid chromatogra-
intestinal absorption. Antimicrobial Agents and Chemotherapy, 61(9),
e00837–e00817.
phy. Analytical Sciences, 6, 53–56.
Salaheldin, A. M., Oliveira-Campos, A. M. F., Parpot, P., Rodrigues, L. M.,
Oliveira, M. M., & Feixoto, F. P. (2010). Synthesis of new tacrine ana-
logues from 4-amino-1H-pyrrole-3-carbonitrile. Helvetica Chimica
Acta, 93, 242–248.
Salaheldin, A. M., Oliveira-Campos, A. M. F., & Rodrigues, L. M. (2008).
3-aminopyrroles and their application in the synthesis of pyrrolo
[3,2-d]pyrimidine (9-deazapurine) derivatives. Arkivoc, xiv, 180–190.
Samadi, A., Chioua, M., Bolea, I., de los Ríos, C., Iriepa, I., Moraleda, I., …
Marco-Contelles, J. (2011). Synthesis, biological assessment and
molecular modeling of new multipotent MAO and cholinesterase
inhibitors as potential drugs for the treatment of Alzheimer's disease.
European Journal of Medicinal Chemistry, 46, 4665–4668.
Samadi, A., de la Fuente Revenga, M., Pérez, C., Iriepa, I., Moraleda, I.,
Rodríguez-Franco, M. I., & Marco-Contelles, J. (2013). Synthesis, phar-
macological assessment, and molecular modeling of 6-chloro-pyr-
idonepezils: New dual AChE inhibitors as potential drugs for the
treatment of Alzheimer's disease. European Journal of Medicinal Chem-
istry, 67, 64–74.
Samadi, A., Estrada, M., Pérez, C., Rodríguez-Franco, M. I., Iriepa, I.,
Moraleda, I., … Marco-Contelles, J. (2012). Pyridonepezils, new dual
AChE inhibitors as potential drugs for the treatment of Alzheimer's
disease: Synthesis, biological assessment, and molecular modeling.
European Journal of Medicinal Chemistry, 57, 296–301.
Le Vine, H. (1999). Quantification of β-sheet amyloid fibril structures with
thioflavin T. Methods in Enzymology, 309, 274–284.
Lindsay-Scott, P. J., & Gallagher, P. T. (2017). Synthesis of heterocycles
from arylacetonitriles: Powerful tools for medicinal chemists. Tetrahe-
dron Letters, 58(27), 2629–2635.
MacFaul, P. A., Morley, A. D., & Crawford, J. J. (2009). A simple in vitro
assay for assessing the reactivity of nitrile containing compounds.
Bioorganic & Medicinal Chemistry Letters, 19, 1136–1138.
Manley-King, C. I., Bergh, J. J., & Petzer, J. P. (2012). Monoamine oxidase
inhibition by C4-substituted phthalonitriles. Bioorganic Chemistry, 40,
114–124.
Marco, J. L., de los Ríos, C., Garcia, A. G., Villarroya, M., Carreiras, M. C.,
Martins, C., … Luque, F. J. (2004). Synthesis, biological evaluation and
molecular modelling of diversely functionalized heterocyclic deriva-
tives as inhibitors of acetylcholinesterase/butyrylcholinesterase and
modulators of Ca2+ channels and nicotinic receptors. Bioorganic &
Medicinal Chemistry, 12, 2199–2218.
McIlhenny, H. M. (1971). Metabolism of [14C]verapamil. Journal of Medici-
nal Chemistry, 14(12), 1178–1184.
Milczek, E. M., Binda, C., Rovida, S., Mattevi, A., & Edmondson, D. E.
(2011). The “gating” residues Ile199 and Tyr326 in human monoamine
oxidase B function in substrate and inhibitor recognition. The FEBS
Journal, 278(24), 4860–4869.
ꢀ
Samadi, A., Marco-Contelles, J., Soriano, E., Alvarez-Pérez, M., Chioua, M.,
Miyashita, M., Suzuki, T., & Yoshikoshi, A. (1987). Fluoride-promoted
epoxidation of α,β-unsaturated compounds. Chemistry Letters, 16(2),
285–288.
Romero, A., … de los Ríos, C. (2010). Multipotent drugs with cholinergic and
neuroprotective properties for the treatment of Alzheimer and neuronal
vascular diseases. I. Synthesis, biological assessment, and molecular model-
ing of simple and readily available 2-aminopyridine-, and 2-chloropyridine-
3,5-dicarbonitriles. Bioorganic & Medicinal Chemistry, 18, 5861–5872.
Samadi, A., Valderas, C., de los Ríos, C., Bastida, A., Chioua, M., González-
Lafuente, L., … Marco-Contelles, J. (2011). Cholinergic and neuro-
protective drugs for the treatment of Alzheimer and neuronal vascular
diseases. II. Synthesis, biological assessment, and molecular modelling
of new tacrine analogues from highly substituted 2-aminopyridine-
3-carbonitriles. Bioorganic & Medicinal Chemistry, 19, 122–133.
Schedin-Weiss, S., Inoue, M., Hromadkova, L., Teranishi, Y., Yamamoto, N. G.,
Wiehager, B., … Tjerberg, L. O. (2017). Monoamine oxidase B is elevated
in Alzheimer disease neurons, is associated with γ-secretase and regu-
lates neuronal amyloid β-peptide levels. Alzheimers Research Therapy, 9,
Morón, J. A., Campillo, M., Perez, V., Unzeta, M., & Pardo, L. (2000).
Molecular determinants of MAO selectivity in
a
series of
indolylmethylamine derivatives: Biological activities, 3D-QSAR/-
CoMFA analysis, and computational simulation of ligand recognition.
Journal of Medicinal Chemistry, 43(9), 1684–1691.
Muñoz, F. J., & Inestrosa, N. C. (1999). Neurotoxicity of acetylcholinester-
ase amyloid β-peptide aggregates is dependent on the type of Aβ pep-
tide and the AChE concentration present in the complexes. FEBS
Letters, 450(3), 205–209.
Naoi, M., Maruyama, W., & Shamoto-Nagai, M. (2018). Type a and B
monoamine oxidases distinctly modulate signal transduction pathway
and gene expression to regulate brain function and survival of neu-
rons. Journal of Neural Transmission, 125, 1635–1650.
Oballa, R. M., Truchon, J.-F., Bayly, C. I., Chauret, N., Day, S., Crane, S., &
Berthelette, C. (2007). A generally applicable method for assessing the
electrophilicity and reactivity of diverse nitrile-containing compounds.
Bioorganic & Medicinal Chemistry Letters, 17, 998–1002.
Pryde, D. C., Henry, S. S., & Meyers, A. I. (1996). Synthesis of 2-tetralones
via a novel 1,2-carbonyl transposition of 1-tetralones. Tetrahedron Let-
ters, 37(19), 3243–3246.
Ramadan, Z. B., Wrang, M. L., & Tipton, K. F. (2007). Species differences in
the selective inhibition of monoamine oxidase (1-methyl-
2-phenylethyl)hydrazine and its potentiation by cyanide. Neurochemi-
cal Research, 32, 1783–1790.
Ramsay, R. R. (2016). Molecular aspects of monoamine oxidase B. Progress
in Neuro-Psychopharmacology & Biological Psychiatry, 69, 81–89.
Ramsay, R. R., & Tipton, K. (2017). Assessment of enzyme inhibition: A
review with examples from the development of monoamine oxidase
and cholinesterase inhibitory drugs. Molecules, 22, 1192. https://doi.
Sharma, P., Srivastava, P., Seth, A., Tripathi, P. N., Banerjee, A. G., &
Shrivastava, S. K. (2019). Comprehensive review of mechanisms of
pathogenesis involved in Alzheimer's disease and potential therapeutic
strategies. Progress in Neurobiology, 174, 53–89.
Silva, D., Chioua, M., Samadi, A., Agostinho, P., Garção, P., Lajarín-
Cuesta, R., … Carreiras, M. C. (2013). Synthesis, pharmacological
assessment, and molecular modeling of acetylcholinesterase/-
butyrylcholinesterase inhibitors: Effect against amyloid-β-induced neu-
rotoxicity. ACS Chemical Neuroscience, 4, 547–565.
Silva, D., Chioua, M., Samadi, A., Carreiras, M. C., Jimeno, M.-L.,
Mendes, E., … Marco-Contelles, J. (2011). Synthesis and pharmacologi-
cal assessment of diversely substituted pyrazolo[3,4-b]quinoline, and
benzo[b]pyrazolo[4,3-g][1,8]naphthyridine derivatives. European Jour-
nal of Medicinal Chemistry, 46, 4676–4681.
Silva, D., Samadi, A., Chioua, M., Carreiras, M. C., & Marco-Contelles, J.
(2010). The Sandmeyer reaction on some selected heterocyclic ring
systems: Synthesis of useful 2-chloroheterocyclic-3-carbonitrile inter-
mediates. Synthesis, 16, 2725–2730.
Reyes, A. E., Chacón, M. A., Dinamarca, M. C., Cerpa, W., Morgan, C., &
Inestrosa, N. C. (2004). Acetylcholinesterase-Aβ complexes are more
toxic than Aβ fibrils in rat hippocampus. American Journal of Pathology,
164(6), 2163–2174.
Reznicek, J., Ceckova, M., Ptackova, Z., Martinec, O., Tupova, L.,
Cerveny, L., & Staud, F. (2017). MDR1 and BCRP transporter-mediated
drug-drug interaction between rilvipirine and abacavir and effect on
Singh, P. D. A., Jackson, J. R., & James, S. P. (1985). Metabolism of man-
delonitrile in the rat. Biochemical Pharmacology, 34(12), 2207–2209.
Strong, H. A., & Spino, M. (1987). Highly sensitive determination of cimeti-
dine and its metabolites in serum and urine by high-performance liquid
chromatography. Journal of Chromatography, 422, 301–308.