18.9 ppm; IR nCO 1693 cm21; exact mass calc. 396.2089, obsd.
396.2088.
1 (a) O. G. Kulinkovich and A. de Meijere, Chem. Rev., 2000, 100, 2789;
(b) F. Sato, H. Urabe and S. Okamoto, Chem. Rev., 2000, 100, 2835; (c)
J. Tsuji, Transition Metal Reagents and Catalysts, Wiley & Sons,
Sussex, 2000; (d) Transition Metals for Organic Synthesis, ed. M. Beller
and C. Bolm, Wiley-VCH, Weinheim, 1998; (e) L. S. Hegedus,
Transition Metals in the Synthesis of Complex Organic Molecules,
University Science Book, Mill Valley, CA, 1994.
2 (a) S. H. Hong, D. S. Choi, Y. K. Chung and S. Lee, Chem. Commun.,
1999, 2099; (b) S. U. Son, S.-J. Paik, S. I. Lee and Y. K. Chung, J.
Chem. Soc., Perkin Trans. 1, 2000, 141; (c) S. U. Son, D. S. Choi and
Y. K. Chung, Org. Lett., 2000, 2, 2097; (d) S. U. Son, Y. K. Chung and
S. Lee, J. Org. Chem., 2000, 65, 6142.
diynes 1b and 1c afforded 3b and 3c in 74% and 51% yields,
respectively.
In conclusion, we have developed a new catalytic route to
fenestrane derivatives via dicobalt octacarbonyl-catalyzed cy-
cloaddition of dienediynes. The following significant points are
noteworthy. All the reactions described here are catalytic with
high conversion rates and experimentally a simple reaction, a
one-pot reaction.
3 Reviews on fenestrane chemistry: (a) D. Kuck, in Advances in
Theoretically Interesting Molecules, ed. R. P. Thummel, JAI Press,
Greenwich, CT, 1998, vol. 4, p. 81; (b) M. Thommen and R. Keese,
Synlett, 1997, 231; (c) W. Luef and R. Keese, in Advances in Strain in
Organic Chemistry, ed. B. Halton, JAI Press, Greenwich, CT, 1993, vol.
3, p. 229; (d) W. C. Agosta, in The Chemistry of Alkanes and
Cycloalkanes, ed. S. Patai and Z. Rappoport, Wiley, New York, 1992,
p. 927; (e) A. K. Gupta, X. Fu, J. P. Snyder and J. M. Cook, Tetrahedron,
1991, 47, 3665; (f) K. Krohn, in Organic Synthesis Highlights, ed. J.
Mulzer, H.-J. Altenbach, M. Braun, K. Krohn and H.-U. Reissig, VCH,
Weinheim, 1991, p. 121; (g) B. R. Venepalli and W. C. Agosta, Chem.
Rev., 1987, 87, 399; (h) R. Keese, in Organic Synthesis; Modern Trends,
ed. O. Chizhov, Blackwell, Oxford, 1987, p. 43.
This work was supported by grant No. 2000-2-12200-001-1
from the Basic Research Program of the Korea Science and
Engineering
Foundation
(KOSEF),
KOSEF
(1999-1-122-001-5), and KOSEF through the Center for
Molecular Catalysis. SUS and DHK thank the Ministry of
Education for the Brain Korea 21 Fellowship.
4 (a) W. A. Smit, S. M. Buhanjuk, S. O. Simonyan, A. S. Shashkov, Y. T.
Struchkov, A. I. Yanovsky, R. Caple, A. S. Gybin, A. G. Anderson and
J. A. Whiteford, Tetrahedron Lett., 1991, 32, 2105; (b) M. Thommen, P.
Gerber and R. Keese, Chimia, 1991, 21; (c) A. van der Waals and R.
Keese, J. Chem. Soc., Chem. Commun., 1992, 570; (d) M. Thommen, A.
Veretenov, R. Guidetti-Grept and R. Keese, Helv. Chim. Acta, 1996, 79,
461; (e) M. M. Bruendddl, S. G. Van Ornum, T.-M. Chan and J. M.
Cook, Tetrahedron Lett., 1999, 40, 1113; (f) S. G. Van Ornummmm, M.
M. Bruendl, H. Cao, M. Reddy, D. S. Grubisha, D. W. Bennett and J. M.
Cook, J. Org. Chem., 2000, 65, 1957; (g) H. Caao, S. G. Van Ornum and
J. M. Cook , Tetraaahedron Lett., 2000, 41, 5313.
5 (a) W. G. Dauben and D. M. Walker, Tetrahedron Lett., 1982, 23, 711;
(b) J. Mani and R. Keese, Tetrahedron, 1985, 41, 5697; (c) M. T.
Crimmins, S. W. Mascarella and L. D. Bredon, Tetrahedron Lett., 1985,
26, 997; (d) V. B. Rao, S. Wolff and W. C. Agosta, Tetrahedron, 1986,
42, 1549; (e) P. Wender, T. M. Dore and M. A. deLong, Tetrahedron
Lett., 1996, 37, 7687.
Notes and references
‡ Compound 2a (0.20 g, 0.69 mmol) was dissolved in 15 ml of THF. The
solution was cooled to 0 °C. To the solution was added NaH (40 mg, 50 wt%
in oil). After the solution was stirred for 1 h, hexa-2,4-dienyl bromide (0.17
g, 1.05 mmol) was added to the solution. The resulting solution was stirred
for 12 h and was quenched with diethyl ether and sat. NH4Cl solution. The
ether layer was separated, dried over anhydrous MgSO4, concentrated and
the residue separated on a silica gel eluting with hexane and diethyl ether
1
(v/v, 10:1). Yield: 0.23 g (89%). 1a: H NMR (CDCl3, 300 MHz): d 7.39
(m, 4 H), 7.28 (m, 6 H), 6.27 (dd, 15.0, 10.0 Hz, 1 H), 6.00 (dd, 15.0, 10.0
Hz, 1 H), 5.70 (m, 2 H), 4.37 (dd, 13.0, 5.4 Hz, 1 H), 4.26 (s, 1 H), 4.08 (dd,
13.0, 7.2 Hz, 1 H), 2.65 (d, 17.0 Hz, 1 H), 2.47 (d, 17.0 Hz, 1 H), 1.71 (d,
6.2 Hz, 3 H), 1.20 (s, 3 H), 1.19 (s, 3 H) ppm; 13C NMR (CDCl3, 75 MHz):
d133.6, 131.7, 131.6, 130.9, 129.8, 128.2, 128.1, 127.5, 126.7, 124.1, 122.9,
87.9, 86.9, 82.6, 75.4, 69.7, 39.1, 29.4, 23.7, 22.8, 18.0 ppm; exact mass
calc. 368.2140, obsd. 368.2137.
§ Compound 1a (0.25 g, 0.68 mmol), 15 ml of CH2Cl2, and Co2(CO)8 (12
mg, 0.035 mmol) were put in a high pressure reactor (100 ml). After the
solution was bubbled with nitrogen for 1 min, the reactor was pressurized
with 30 atm of CO. The reactor was heated at 130 °C for 18 h. After the
reactor was cooled to rt, excess gas was released and the reaction mixture
was transferred into a one-neck flask (50 ml). Removal of the solvent
followed by chromatography on a silica gel column eluting with hexane and
diethyl ether (v/v, 5+1) gave 3a in 84% yield (0.23 g, 0.58 mmol).
¶ 1H NMR (CDCl3, 300 MHz): d 7.60–7.24(m, 10 H), 6.04 (m, 1 H), 5.73
(m, 1 H), 4.16 (dd, 8.7, 5.5 Hz, 1 H), 3.84 (dd, 8.7, 5.5 Hz, 1 H), 3.70 (s, 1
H), 2.90 (m, 1 H), 2.72 (m, 1 H), 2.68 (d, 15.0 Hz, 1 H), 2.43 (d, 15.0 Hz,
1 H), 1.22 (d, 7.3 Hz, 3 H), 1.04 (s, 3 H), 0.00 (s, 3 H) ppm; 13C NMR
(CDCl3, 75 MHz): d 209.2, 180.7, 139.2, 137.9, 134.8, 131.3, 129.8, 128.9,
128.3, 127.7, 126.6, 89.6, 75.3, 70.3, 65.9, 48.0, 43.9, 42.7, 36.8, 25.9, 23.3,
6 R. Keese, R. Guidetti-Grept and B. Herzog, Tetrahedron Lett., 1992, 33,
1207.
7 (a) X. Fu, G. Kubiak, W. Zhang, W. Han, A. K. Gupta and J. M. Cook,
Tetrahedron, 1993, 49, 1511; (b) O. Kubiak, X. Fu, A. K. Gupta and J.
M. Cook, Tetrahedron Lett., 1990, 31, 4285.
8 B. Bredenkötter, U. Hörke and D. Kuck, Chem. Eur. J., 2001, 7,
3387.
9 S. U. Son, Y. A. Yoon, D. S. Choi, J. K. Park and Y. K. Chung, Org.
Lett., 2001, 3, 1065.
10 A. J. Pearson, R. J. Shively Jr. and R. A. Dubbert, Organometallics,
1992, 11, 4096.
11 See the Supporting Information.†
12 A referee suggested this reaction pathway. The authors thank the referee
for this suggestion.
CHEM. COMMUN., 2002, 56–57
57