NATUre CHemIsTry
Articles
22. Luo, J., Preciado, S. & Larrosa, I. Overriding ortho–para selectivity via a
the realization of an unconventional site selectivity for the syn-
thesis of 2,3,4-trisubstiuted phenols. However, the demonstration
of the use of the methods to break lignin aryl−aryl linkages is still
at the proof-of-concept stage. It is anticipated that the mechanistic
insights obtained from this study should have broad implications
for the discovery of new catalytic methods to activate non-polar and
unstrained C−C bonds in common organic compounds.
traceless directing group relay strategy: the meta-selective arylation of
phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).
23. Schröder, N., Wencel-Delord, J. & Glorius, F. High-yielding, versatile, and
practical [Rh(iii)Cp*] catalyzed ortho bromination and iodination of arenes.
J. Am. Chem. Soc. 134, 8298–8301 (2012).
24. Kar, A., Mangu, N., Kaiser, H. M., Beller, M. & Tse, M. A general gold-
catalyzed direct oxidative coupling of non-activated arenes. Chem. Commun.
386–388 (2008).
25. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. Te
catalytic valorization of lignin for the production of renewable chemicals.
Chem. Rev. 110, 3552–3599 (2010).
Data availability
Crystallographic data for the structures reported in this article have been deposited at
the Cambridge Crystallographic Data Centre, under deposition nos CCDC 1848268
(2z), 1848266 ([Rh(2al)Cl)]2) and 1848267 (8g). Copies of the data can be obtained
the findings of this study are available within the article and its Supplementary
Information, or from the corresponding author upon reasonable request.
26. Sergeev, A. G. & Hartwig, J. F. Selective, nickel-catalyzed hydrogenolysis of
aryl ethers. Science 332, 439–443 (2011).
27. Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective
metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135,
6415–6418 (2013).
28. Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced
depolymerization of oxidized lignin to aromatics. Nature 515,
249–252 (2014).
Received: 19 May 2018; Accepted: 10 September 2018;
Published: xx xx xxxx
29. Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble
lignin-derived phenolic monomers and dimers and processable carbohydrate
pulps. Energy Environ. Sci. 8, 1748–1763 (2015).
References
1. Drahl, M. A., Manpadi, M. & Williams, L. J. C−C fragmentation: origins and
recent applications. Angew. Chem. Int. Ed. 52, 11222–11251 (2013).
2. Fahim, M. A., Alsahhaf, T. A. & Elkilani, A. Fundamentals of Petroleum
Refning 199–235 (Elsevier, Oxford, 2010).
30. Gao, F., Webb, J. D., Sorek, H., Wemmer, D. E. & Hartwig, J. F. Fragmentation
of lignin samples with commercial Pd/C under ambient pressure of hydrogen.
ACS Catal. 6, 7385–7392 (2016).
31. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer
production during biomass depolymerization. Science 354,
329–333 (2016).
3. Murakami, M. & Ito, Y. Cleavage of carbon−carbon single bonds by
transition metals. Top. Organomet. Chem. 3, 97–129 (1999).
4. Rybtchinski, B. & Milstein, D. Metal insertion into C−C bonds in solution.
Angew. Chem. Int. Ed. 38, 870–883 (1999).
5. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed
functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114,
8613–8661 (2014).
6. Dong, G. C–C Bond Activation (Topics in Current Chemistry 346, Springer,
Berlin, 2014).
7. Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative
addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).
8. Murakami, M. Cleavage of Carbon–Carbon Single Bonds by Transition Metals
(Wiley-VCH, Weinheim, 2015)
32. Karkas, M. D., Matsuura, B. S., Monos, T. M., Magallanes, G. & Stephenson,
C. R. J. Transition-metal catalyzed valorization of lignin: the key to a
sustainable carbon-neutral future. Org. Biomol. Chem. 14, 1853–1914 (2016).
33. Zakzeski, J. & Weckhuysen, B. M. Lignin solubilization and aqueous phase
reforming for the production of aromatic chemicals and hydrogen.
ChemSusChem 4, 369–378 (2011).
34. Dimmel, D. & Gellerstedt, G. in Lignin and Lignans: Advances in Chemistry (eds
Heitner C., Dimmel D. & Schmidt J.) 349–391 (CRC Press, Boca Raton, 2010).
35. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in
bioengineering, biorefning and catalysis. Angew. Chem. Int. Ed. 55,
8164–8215 (2016).
36. Argyropoulos, D. S. et al. Abundance and reactivity of dibenzodioxocins in
sofwood lignin. J. Agric. Food. Chem. 50, 658–666 (2002).
9. Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in
C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).
10. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit
C–C single-bond cleavage of strained ring systems by transition metal
complexes. Chem. Rev. 117, 9404–9432 (2017).
acknowledgements
11. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a
carbon–carbon bond in solution by transition-metal insertion. Nature 364,
699–701 (1993).
We thank the University of Chicago, NIGMS (R01GM109054) and the Sloan Foundation
for research support. We acknowledge G. Lu and P. Liu (University of Pittsburgh) for
helpful discussion on the computational study. Calculations were performed at the Extreme
Science and Engineering Discovery Environment (XSEDE) supported by the NSF. J.Z.
acknowledges the financial support from Shanghai Institute of Organic Chemistry (SIOC),
Pharmaron and Zhejiang Medicine for a joint postdoctoral fellowship. We are grateful
to H. N. Lim for providing some rhodium catalysts and K.-Y. Yoon for X-ray analysis.
V. Rawal, Z. Dong and J. Xie are thanked for helpful suggestions. We thank Z. Rong for
assistance with using the autoclave and Y. Xu for checking the experimental procedures.
12. Gozin, M. et al. Transfer of methylene groups promoted by metal
complexation. Nature 370, 42–44 (1994).
13. Ruhland, K., Obenhuber, A. & Hofmann, S. D. Cleavage of unstrained
C(sp2)–C(sp2) single bonds with Ni0 complexes using chelating assistance.
Organometallics 27, 3482–3495 (2008).
14. Grein, F. Twist angles and rotational energy barriers of biphenyl and
substituted biphenyls. J. Phys. Chem. A 106, 3823–3827 (2002).
15. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and
catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).
author contributions
J.Z. and G.D. conceived and designed the experiments. J.Z. performed the experiments.
J.W. performed the DFT calculation. J.Z., J.W. and G.D. co-wrote the manuscript.
16. Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via
ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).
17. Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. Te catalytic
intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42,
112–114 (2003).
18. Liou, S.-Y., Gozin, M. & Milstein, D. Directly observed oxidative addition of
a strong carbon–carbon bond to a soluble metal complex. J. Am. Chem. Soc.
117, 9774–9775 (1995).
19. Liou, S.-Y., van der Boom, M. E. & Milstein, D. Catalytic selective cleavage of
a strong C–C single bond by rhodium in solution. Chem. Commun.
687–688 (1998).
20. Evans, D., Osborn, J. A. & Wilkinson, G. Hydroformylation of alkenes by use
of rhodium complex catalysts. J. Chem. Soc. A 3133–3142 (1968).
21. Dai, H.-X., Li, G., Zhang, X.-G., Stepan, A. F. & Yu, J.-Q. Pd(ii)-catalyzed
ortho- or meta-C–H olefnation of phenol derivatives. J. Am. Chem. Soc. 135,
7567–7571 (2013).
Competing interests
The authors declare no competing interests.
additional information
Correspondence and requests for materials should be addressed to G.D.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2018