DIFABS.31 The structures were refined on F2 using SHELXL-
9332 to R1 ¼ 0.0758 and wR2 ¼ 0.2032 for 4112 reflections with
I > 2s(I).
12 S. Chowdhury, P. B. Iveson, M. G. B. Drew and D. Datta,
New J. Chem., submitted.
11 V. Gutmann, Coord. Chem. Rev., 1976, 18, 225.
13 The metal coordination sphere in [CuL]þ is a very distorted tet-
rahedron. The void space around the metal atom might allow for
further coordination but no significant interactions between the
cation and the anion less than the sum of van der Waals radii
could be observed. However, the acetone molecule forms a weak
Crystal data. C55H50BCuN6O (1Áacetone): Mw ¼ 885.36,
triclinic, spacegroup P-1, a ¼ 10.779(17), b ¼ 13.887(17), c ¼
+
16.42(2) A, a ¼ 87.56(1)ꢂ, b ¼ 80.70(1)ꢂ, g ¼ 83.01(1)ꢂ, U ¼
hydrogen bond to the hydrogen atom on C3. The anion BPh4ꢀ is
+
2408(6) A3, Z ¼ 2, m ¼ 0.498 mmꢀ1, Dc ¼ 1.221 g cmꢀ3, 7997
+
found to have B–C distances of 1.641(7)–1.657(6) A, Cipso–B–
Cipso angles in the range 106.6(4)–111.6(4)ꢂ and C–Cipso–C angles
of 113.6(4)–114.9(5)ꢂ. We have investigated the dimensions of the
BPh4 anion in the Cambridge Crystallographic Database and
unique data were collected.
suppdata=nj=b1=b106356c= for crystallographic data in CIF
or other electronic format.
ꢀ
found that the anion is susceptible to packing effects and in some
cases is significantly distorted from tetrahedral. Thus, from 1625
observations of the anion, the average range of the C–B–C angle
(defined as the difference between the maximum and minimum
angles) is 7.2ꢂ, somewhat greater than that observed in the present
structure, but 34 examples have a range from 15–32ꢂ. The di-
Acknowledgements
mensions in the present structure are consistent with a mean B–C
M. G. B. D. thanks EPSRC and University of Reading for
funds for the Image Plate System. D. D. thanks the Depart-
ment of Science and Technology, New Delhi, India, for
financial support. Useful advice received from a reviewer is
gratefully acknowledged.
+
distance of 1.659 A and a C–Cipso–C angle of 114.7ꢂ. The average
sum of the three angles at Cipso is 359.8ꢂ in our case, confirming
the trigonal nature of these atoms.
14 D. Datta, H. A. O. Hill and H. Nakayama, J. Electroanal. Chem.,
1992, 324, 307 and references therein.
15 C. J. James and R. M. Fuoss, J. Solution Chem., 1975, 4, 91.
16 A. D’Aprano and R. M. Fuoss, J. Solution Chem., 1975, 4, 175.
17 R. L. Kay, C. Zawoyski and D. F. Evans, J. Phys. Chem., 1965,
69, 4208.
References and notes
18 D. F. Evans, J. Thomas and J. A. Nadas, J. Phys. Chem., 1971,
75, 1714.
19 P. C. Carman, J. Solution Chem., 1978, 7, 845.
20 D. S. Gill, A. Sharma, M. S. Chauhan, A. N. Sharma and J. S.
Cheema, Electrochim. Acta, 1985, 30, 151.
21 I. Svorstꢀl, H. Hꢀiland and J. Songstad, Acta Chem. Scand. Ser. B,
1984, 38, 885.
22 R. M. Fuoss and F. Accascina, Electrolytic Conductance, Inter-
science, New York, 1959.
23 M. G. B. Drew, C. Crains, S. G. McFall and S. M. Nelson,
J. Chem. Soc., Dalton T rans., 1979, 2020.
24 K. D. Karlin, B. I. Cohen, A. Farooq, S. Liu and J. Zubieta,
Inorg. Chim. Acta, 1988, 153, 9.
25 T. Nozaki, N. Matsumoto, H. Okawa, H. Miyasaka and G.
Mago, Inorg. Chem., 1995, 34, 2108.
26 P. K. Pal, S. Chowdhury, M. G. B. Drew and D. Datta, New
J. Chem., 2000, 24, 931.
27 D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of
L aboratory Chemicals, Pergamon Press, Oxford, 2nd edn., 1980.
28 R. M. Fuoss, J. B. Berkowitz, E. Hirsch and S. Petrucci, Proc.
Natl. Acad. Sci. U.S.A., 1958, 44, 27.
29 W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916.
30 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
31 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39,
158.
1
2
3
D. H. Geske, J. Phys. Chem., 1959, 63, 1062.
G. Wittig and P. Raff, Justus L iebigs Ann. Chem., 1951, 573, 195.
G. K. Patra, G. Mostafa, M. G. B. Drew and D. Datta, Cryst-
EngComm., 2000, 19.
D. Datta, Indian J. Chem., Sect. A, 1987, 26, 605.
S. Hati and D. Datta, J. Chem. Res., 1994, (S) 90; (M) 0555.
C. Wohlfarth, in CRC Handbook of Chemistry and Physics, ed.
D. R. Lide, CRC Press, Boca Raton, 76th edn., 1995–6, pp. 6–193
to 6–207.
4
5
6
7
When reactions (5) and (6) are considered together, reaction (6)
has to be rearranged so that the net reaction is:
ꢁ
ꢀ
BPh4 þ eꢀ Ð BPh4
SꢀBPh3 þ Ph ¼ ꢁ BPh4 þ S
ꢁ
ꢁ
SꢀBPh3 þ Ph þ eꢀ ¼ BPh4ꢀ þ S
The total free energy change for the net reaction is then given by
ꢀnFE1=2 ꢀ DG0 where E1=2 is the half-wave potential for couple
(5) in V, n the number of electrons involved in couple (5), F the
faraday constant and DG0 the free energy change for reaction (6).
M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart,
J. Am. Chem. Soc., 1985, 107, 3902.
8
9
D. Datta and S. N. Singh, J. Chem. Soc., Dalton T rans., 1991, 1541.
10 V. Gutmann, G. Resch and W. Liner, Coord. Chem. Rev., 1982,
43, 133.
32 G. M. Sheldrick, SHELXL-93, University of Gottingen, Germany,
¨
1993.
New J. Chem., 2002, 26, 367–371
371