10.1002/chem.201802932
Chemistry - A European Journal
COMMUNICATION
In summary the above analysis demonstrates the main
factors that contribute to an enhanced half-life. The high-
performers developed in this work either feature side groups
with substitution on the ortho position (QC2d, QC2f, QC2i) or
large asymmetric side groups (QC2l, QC2m). These designs
affect the rotational motion of the side group relative to the
parent compound, both in terms of the vibrational and
configurational degrees of freedom, which modifies the normal
correlation between the first excitation energy (i.e., the S0-S1
spacing on the NBD side) and the back-conversion barrier ΔH‡,
and gives rise to a larger entropy of back-conversion ΔS‡. This
thus provides a rationale that is transferable to other
compounds and possibly even other chemical reactions and
photoswitch systems. While the present analysis is primarily
qualitative in nature, more detailed investigations are
warranted to comprehensively explore the back-conversion
reaction and to establish the role of the underlying
computational techniques, including both the treatment of the
electronic structure and the evaluation of the transition rates.
the absorption properties of the NBD beyond 500 nm to better
match the solar spectrum.
Acknowledgements
M.J., A.U.P, M.M., Z.W., A.D. and K.M.P. acknowledges funding
from the K&A Wallenberg foundation as well as funding from the
Swedish Strategic Research council.
Keywords: molecular photoswitch • energy storage • energy
storage • norbornadiene • quadricyclane • solar energy
[1]
[2]
W. E. Wentworth, E. Chen, Solar Energy 1976, 18, 205-214.
K. Moth-Poulsen, D. Ćoso, K. Börjesson, N. Vinokurov, S. Meier, A.
Majumdar, K. P. C. Vollhardt, R. A. Segalman, Energy Env. Sci. 2012, 5,
8534-8537.
[3]
[4]
[5]
T. J. Kucharski, N. Ferralis, A. M. Kolpak, J. O. Zheng, D. G. Nocera, J.
C. Grossman, Nat. Chem. 2014, 6, 441-447.
A
host of novel 2-cyano-3-aryl substituted NBD
A. Lennartson, A. Roffey, K. Moth-Poulsen, Tetrahedron Lett. 2015, 56,
1457-1465.
derivatives was synthesized using transition metal free
catalysis, many of which could be made in multi-gram
quantities, in addition to others which required the use of
Suzuki protocol. These molecules were comprehensively
studied for their utility in MOST applications, including optical
properties, thermal conversions and energy storage density.
Here, it was found that the ortho substituents placed on the
benzene ring, or a 1-naphthyl substitution, resulted in the
formation of metastable QC with extraordinarily long half-lives
at ambient temperature in toluene without incurring reduction
of any other properties. To explain how these findings affect
the rate of the process, a valuable information we can derive is
that the high conformational constrains on the QC energy
landscapes forces the reaction pathway from QC to NBD to be
topologically more complex and less accessible in the high-
performing species compared to the lower performing
analogues. This provides a general rationale for the design of
compounds that overcome the strong correlation between
absorption spectrum and back-conversion rates that have
limited the success of compounds developed earlier. The most
promising compounds features measured energy densities in
the 300–570 kJ/kg, onset of absorption in the 380 nm range
combined with energy storage half lives up to 18 years at room
temperature. Further research efforts are necessary to push
a) Y. Kinai, V. Srinivasan, S. K. Meier, K. P. C. Vollhardt, J. C.
Grossman, Angew. Chem. Int. Ed. 2010, 49, 8926-8929; b) R. Boese,
J. K. Cammack, A. J. Matzger, K. Pflug, W. B. Tolman, K. P. C.
Vollhardt, T. W. Weidman, J. Am. Chem. Soc. 1997, 119, 6757-6773; c)
K. Börjesson, D. Ćoso, V. Gray, J. C. Grossman, J. Guan, C. B. Harris,
N. Hetkorn, Z. Hou, Y. Kanai, D. Lee, J. P. Lomont, A. Majumdar, S. K.
Meier, K. Moth-Poulsen, R. L. Myrabo, S. C. Nguyen, R. A. Segalman,
V. Srinivasan, W. B. Tolman, N. Vinokurov, K. P. C. Vollhardt, T. W.
Weidman, Chem. Eur. J. 2014, 20, 15587-15604.
[6]
a) G. D. Han, S. S. Park, Y. Liu, D. Zhitomirsky, E. Cho, M. Dincă, J. C.
Grossman, J. Mater. Chem. A 2016, 4, 16157-16165; b) E. N. Cho, D.
Zhitomirsky, G. G. D. Han, Y. Liu, J. C. Grossman, ACS Appl. Mater.
Interfaces 2017, 9, 8679-8687; c) W. Feng, S. Li, M. Li, C. Qin, Y. Feng, J.
Mater. Chem. A 2016, 4, 8020-8028; d) K. Masutani, M. Morikawa, N.
Kimizuka, Chem. Commun. 2014, 50 15803-15806; e) Y. Feng, H. Liu, E. Liu,
N. Zhao, K. Yoshino, W. Feng, Sci. Rep. 2013, 3, 3260.
[7]
a) A. Ikeda, A. Kameyama, T. Nishikubo, T. Nagai, Macromolecules 2001, 34,
2728-2734; b) K. Jorner, A. Dreos, R. Emanuelsson, O. E. Bakouri, I. F.
Galván, K. Börjesson, F. Feixas, R. Lindh, B. Zietz, K. Moth-Poulsen, H.
Ottosson, J. Mater. Chem. A 2017, 5, 12369-12378; c) V. A. Bren, A. D.
Dubonsov, V. I. Minkin, V. A. Chernoivanov, Russ. Chem. Rev. 1991,
60, 451-469; d) S. Miki, Y. Asako, Z. Yoshida, Chem. Lett. 1987, 16,
195-198; e) A. D. Dubonsov, V. A. Bren, V. A. Chernoivanov, Russ.
Chem. Rev. 2002, 71, 917-927; f) Z. Yoshida, J. Photochem. 1985, 29, 27-
40; g) M. Quant, A. Lennartson, A. Dreos, K. Moth-Poulsen, Chem. Eur.
J. 2016, 22, 13265-13274; h) Y. Harel, A. W. Adamson, C. Kutal, P. A.
Grutsch, K. Yasufuku, J. Phys. Chem. 1987, 91, 901-904; i) V. Gray, A.
Lennartson, P. Ratanalert, K. Börjesson, K. Moth-Poulsen, Chem. Commun.
2014, 50, 5330-5332; j) O. Brummel, D. Besold, T. Döpper, Y. Wu, S.
This article is protected by copyright. All rights reserved.