72
P. Kirsch et al. / Journal of Fluorine Chemistry 112 +2001) 69±72
cyclohexane substructure and an aromatic ring with high
yield and under very mild conditions.
À117.1 8mc, 4F, CF2CF2), À79.3 8d, J 8:3 Hz, 2F,
CF2O); MS 8EI): m=z ꢀ% 504 [M ] 855), 356
[M ÀF3PhOH] 8100), 148 872), 131 818), 81 821); HRMS
8EI) for C18H29F9O: calcd. 504.207470, exp. 504.208200.
3. Experimental
À
3.1. Preparation of the dithianylium salt 17 ÁCF3SO3
Acknowledgements
A suspension of 17.4 g 843 mmol) of the carboxylic acid
16 in toluene/isooctane 84:6) was treated at room tempera-
ture with 6.0 g 855 mmol) of 1,3-propanedithiol. The mix-
ture was heated slowly to 608C, and after dropwise addition
of 8.0 g 853 mmol) of tri¯uoromethanesulfonic acid over a
time span of 5 min, re¯uxed for 3 h under azeotropic
removal of water. After cooling down to 858C, 100 ml of
dibutyl ether were added dropwise. Cooling down to 08C
under stirring precipitated the product which was ®ltrated-
off, washed twice with 20 ml of ice-cold methyl tert-butyl
ether and dried in vacuo. Yield: 20.8 g 884%) of
We thankDr. J. Krause, Dr. M. Heckmeier, Dr. G. LuÈssem
and their co-workers for the physical evaluation of the new
substances. A part of the workpresented in this article was
performed under the management of the Association of
Super-Advanced Electronics Industries 8ASET) in the
R&D program of the Japanese Ministry of International
Trade and Industry 8MITI) supported by the New Energy and
Industrial Development Organization 8NEDO).
À
References
17 ÁCF3SO3 as yellowish crystals, which were used for
the following reaction step without further puri®cation.
[1] P. Kirsch, M. Bremer, Angew. Chem. 112 82000) 4384±4405.
[2] P. Kirsch, M. Bremer, Angew. Chem. Int. Ed. 39 82000) 4216±4235.
[3] S.M. Kelly, Flat Panel Displays: Advanced Organic Materials, RSC
Materials Monographs, The Royal Society of Chemistry, Cambridge,
2000.
3.2. Preparation of the liquid crystal 4
À
A suspension of 7.0 g 812 mmol) of 17 ÁCF3SO3 in
80 ml of CH2Cl2 was cooled to À708C. Then, a mixture
of 3 ml 822 mmol) of triethylamine and 2.22 g 815 mmol) of
3,4,5-tri¯uorophenol was added dropwise, followed after 1 h
by 20 ml 8124 mmol) of NEt3Á3HF and, after another
10 min, by 10.0 g 863 mmol) of bromine in 30 ml of CH2Cl2
over a time span of 30 min. After stirring for 90 min at
À708C, the mixture was allowed to warm up to À208C and
poured into a stirred ice-cold mixture of 350 ml 1N NaOH
and 35 ml of saturated aqueous NaHSO3. The organic phase
was separated, and the aqueous phase was extracted twice
with 80 ml of n-pentane. The combined organic phases were
dried over Na2SO4 and evaporated to dryness. The semi-
solid residue was dissolved in n-hexane and ®ltrated over a
short silica gel column. A further puri®cation was achieved
by ¯ash-chromatography 8n-hexane; silica gel), followed by
two recrystallizations from n-pentane. Yield: 2.0 g 833%) of
4 as colorless crystals. For phase transitions see Table 1; 1H
NMR 8250 MHz, CDCl3, 303 K): d 6:82 8mc, 2H, ar-2,6-
H), 2.15À1.77 8m, 12H), 1.48À1.12 8m, 12H), 0.90 8t,
J 6:6 Hz, 3H); 19F NMR 8235 MHz, CDCl3, 303 K):
d À164:8 8mc, 1F, ar-4-F), À133.4 8mc, 2F, ar-3,5-F),
[4] D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill 8Eds.),
Handbookof Liquid Crystals, Wiley-VCH, Weinheim, 1998.
[5] S. Kobayashi, H. Hori, Y. Tanaka, in: P.J. Collings, J.S. Patel 8Eds.),
Active Matrix Liquid Crystal Displays in Handbookof Liquid
Crystal Research, Oxford University Press, New York, 1997,
pp. 415±444.
[6] W. Maier, G. Meier, Z. Naturforschg. 16a 81961) 262±267.
[7] D. Demus, G. Pelzl, Z. Chem. 21 81981) 1±9.
[8] W.H. de Jeu, Physical Properties of Liquid Crystalline Materials,
Gordon & Breach, 1980.
[9] P. Kirsch, M. Bremer, A. Taugerbeck, T. Wallmichrath, Angew.
Chem. 113 82001) 1528±1532; Angew. Chem. Int. Ed. 40 82001)
1480±1484.
[10] P. Kirsch, M. Bremer, F. Huber, H. Lannert, A. Ruhl, M. Lieb, T.
Wallmichrath, J. Am. Chem. Soc. 123 82001) 5414±5417.
[11] J. Kollonitsch, S. Marburg, L.M. Perkins, J. Org. Chem. 41 81976)
3107±3111.
[12] S.C. Sondej, J.A. Katzenellenbogen, J. Org. Chem. 51 81986) 3508±
3513.
[13] G.K.S. Prakash, D. Hoole, V.P. Reddy, G.A. Olah, Synlett 81993)
691±693.
[14] M. Kuroboshi, T. Hiyama, J. Fluorine Chem. 69 81994) 127±128.
[15] R.D. Chambers, G. Sandford, M.E. Sparrowhawk, M.J. Atherton, J.
Chem. Soc., Perkin Trans. 1 81996) 1941±1944.
[16] C. York, G.K.S. Prakash, G.A. Olah, Tetrahedron 52 81996) 9±14.