Please doChneomtCaodmjumst margins
Page 4 of 5
COMMUNICATION
Journal Name
1
Nikolaev, A. Orellana. Synthesis 2016, D4O8,I:11704.110–391/7D608C;C(0c5)8L9.5E
R. Mills, S. A. L. Rousseaux. Eur. J. Org. Chem. 2019, 8.
C. H. DePuy, L. G. Schnack, J. W. Hausser, W. Wiedemann. J.
Am. Chem. Soc. 1965, 87, 4006.
For the ring-opening of cyclopropyl tosylate: J. D. Roberts, V.
C. Chambers. J. Am. Chem. Soc. 1951, 73, 5034.
(a) B. A. Howell, J. G. Jewett. J. Am. Chem. Soc. 1971, 93, 798;
(b) J. Salaün, J. Org. Chem. 1976, 41, 1237.
D. H. Gibson, C. H. DePuy, Chem. Rev. 1974, 74, 605.
(a) J. W. Hausser, N. J. Pinkowski. J. Am. Chem. Soc. 1967, 89,
6981; (b) P. v. R. Schleyer, W. F. Sliwinski, G. W. Van Dine, U.
Schöllkopf, J. Paust, K. Fellenberger. J. Am. Chem. Soc. 1972,
94, 125.
(a) A. Stolle, J. Salaün, A. de Meijere. Tetrahedron Lett. 1990,
31, 4593; (b) P. Aufranc, J. Ollivier, A. Stolle, C. Bremer, M.
Es-Sayed, A. de Meijere, J. Salaün, Tetrahedron Lett. 1993,
34, 4193; (c) S. Racouchot, J. Ollivier, J. Salaün, Synlett 2000,
1729; (d) F. Lecornué, F. Charnay-Pouget, J. Ollivier. Synlett
2006, 1407.
A proposed mechanistic picture for this cyclopropyl
tosylate ring-opening arylation is outlined in Figure 3. Starting
with 1-arylcyclopropyl tosylates (1), activation of the substrate
occurs with arylboronic acid, which likely acts as an H-bond
donor (5).20 This intermediate then fragments to release
tosylate anion and allyl cation 6. In the absence of Ni, this
cation can be trapped with an activated arylboronate to yield
Wheland intermediate 7. Elimination of the boronate restores
aromaticity, forming arylated product 2. Alternatively, in the
presence of Ni(0), oxidative addition can yield Ni(II)
intermediate 8, which can undergo transmetallation with
arylboronic acid to yield intermediate 9. Finally, reductive
elimination releases the allyl arene 2. In the presence of Ni, it
is likely that some of the non-Ni-catalyzed process also occurs,
which explains the imperfect regioselectivity for certain entries
in Table 2.
2
3
4
5
6
7
Figure 3. Proposed mechanisms without and with Ni
8
9
(a) Y. Y. Kozyrkov, O. G. Kulinkovich. Synlett 2002, 443; (b) O.
G. Kulinkovich, Y. Y. Kozyrkov, A. V. Bekish, E. A.
Matiushenkov, I. L. Lysenko. Synthesis 2004, 1713.
L. G. Quan, H. G. Lee, J. K. Cha. Org. Lett. 2007, 9, 4439.
p-Tol
H
H
O
O
O
Ar2B(OH)2
Ar2
B
Ar1
S
Ar1
–TsO–
O
O
OTs
Ar1
6
1
5
10 L. R. Mills, J. J. Monteith, G. d. Passos Gomes, A. Aspuru-Guzik,
S. A. L. Rousseaux. J. Am. Chem. Soc. 2020, 2020, 142, 13246–
13254.
11 For a related SEAr functionalization reaction of silyl-protected
cyclopropanols using electron-rich arenes and
diethylaminosulfur trifluoride (DAST) to generate the allyl
cation, see M. Kirihara, T. Noguchi, H. Kakuda, T. Akimoto, A.
Shimajiri, M. Morishita, A. Hatano, Y. Hirai. Tetrahedron Lett.
2006, 47, 3777–3780.
12 A. A. Protter, S. Chakravarty. Compounds and Methods of
Treating Hypertension. WO Patent 2012112961, Aug. 23,
2012.
13 C. S. Burgey, D. V. Paone, A. Q. Shaw, J. Z. Deng, D. N.
Nguyen, C. M. Potteiger, S. L. Graham, J. P. Vacca, T. M.
Williams. Org. Lett. 2008, 10, 3235.
14 For select recent metal-catalyzed reactions employing 2-
substituted allyl electrophiles: (a) C. Dong, L. Zhang, X. Xue, H.
Li, Z. Yu, W. Tang, L. Xu RSC Adv. 2014, 4, 11152; (b) X. Cui, S.
Wang, Y. Zhang, W. Deng, Q. Qian, H. Gong. Org. Biomol. Chem.
2013, 11, 3094; (c) M. D. Levin, F. D. Toste, Angew. Chem. Int.
Ed. 2014, 53, 6211; (d) X.-G. Jia, P. Guo, J. Duan, X.-Z. Shu.
Chem. Sci. 2018, 9, 640.
R
without Ni
Ar2B(OH)2
K3PO4
Ar2
Ar1
Ar1
B(OR)3
2
7
with Ni
–Ni(0)
Ar2B(OH)2
K3PO4
Ln
NiII
Ar2
Ni(0)
Ar1
Ar1
NiIIXLn
8
9
In conclusion, we have discovered an arylboronic acid-
mediated and Ni-catalyzed process for the ring-opening
arylation of 1-arylcyclopropyl tosylates, which are readily
accessible from esters via the Kulinkovich reaction. The
arylboronic acid plays two roles in this reaction: i) it enables
cyclopropane ring-opening and ii), it participates in a Ni-
catalyzed cross-coupling to yield allyl products bearing aryl
substituents at the 2 position.
We thank NSERC (Discovery Grants and Canada Research
Chair programs), the Canada Foundation for Innovation
(Project No. 35261), the Ontario Research Fund, Kennarshore
Inc., and the University of Toronto for generous financial
support of this work. We also acknowledge the Canada
Foundation for Innovation (Project No. 19119) and the Ontario
Research Fund for funding the Centre for Spectroscopic
Investigation of Complex Organic Molecules and Polymers. L.
R. M. thanks NSERC for a graduate scholarship (PGS-D). J. J. M.
thanks NSERC for a graduate scholarship (CGS M) and the
University of Toronto for a doctoral scholarship (FAST).
15 G. Wu, S. Xu, Y. Deng, C. Wu, X. Zhao, W. Ji, Y. Zhang, J.
Wang. Tetrahedron 2016, 72, 8022–8030.
16 In our hands, electron-rich 1-(hetero)arylcyclopropyl
tosylates (e.g., 1-(4-methoxyphenyl), 1-(2-thienyl), 1-(2-
furanyl)) were difficult to access.
17 The reaction with phenol 3b gave the O-allylated product.
18 Adding catalytic NiCl2(PPh3)2 to these reactions gave no
noticeable increase in yield. Nucleophilic arenes that
typically participate efficiently in Friedel–Crafts chemistry
(e.g. 1H-indole, 1,3,5-trimethoxybenzene) yielded no
detectable amount of substituted product.
19 Alabugin, I. V. Stereoelectronic Effects. Chichester, UK;
Hoboken, NJ: John Wiley & Sons, 2016.
20 (a) K. M. Diemoz, A. K. Franz. J. Org. Chem. 2019, 84, 1126;
(b) S. Zhang, D. Lebœuf, J. Moran. Chem. Eur. J. 2020, 26,
9883.
Conflicts of interest
The authors declare no conflicts of interest.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins