324
J. Y. Goujon et al.
LETTER
H, J = 9.8 Hz, CHO), 4.15 (d, 1 H, J = 9.8 Hz, CHO), 4.91 (d, 1 H,
J = 4.6 Hz, CHO), 6.72–7.19 (m, 4 H, Har). 13C NMR (50.3 MHz,
DMSO), 20.8, 38.2, 76.1, 79.0, 83.4, 115.7, 119.9, 125.6, 127.7,
130.7, 153.9. m/z (EI): 176 (77), 159 (24), 147 (62) 131 (100), 91
(27). IR (liquid film): 2975, 2941, 2876, 1482 cm–1. Anal. Calcd for
C11H12O2: C, 74.98; H, 6.86; O, 18.16. Found: C, 74.75; H, 6.89; mp
= 28 °C.
R
O
H
a
b
O
7
R
+
a
b
H
OH
R
O
OH
Typical Data for New compounds 1
O
1a: 1H NMR (200 MHz, CDCl3), 1.36 (s, 3 H, CH3), 2.03 (br s, 1
H, OH), 3.59 (d, 1 H, J = 11.6 Hz, CH-O), 3.68 (d, 1 H, J = 11.6 Hz,
CH-O), 5.56 (d, 1 H, J = 9.9 Hz, CH=), 6.45 (d, 1 H, J = 9.9Hz,
CH=), 6.76-7.15 (m, 4 H, Har). 13C NMR (50.3 MHz, CDCl3),
22.6, 68.7, 79.2, 116.1, 120.8, 121.1, 124.7, 126.6, 126.7, 129.3,
153.9. m/z (EI): 176 (3), 145 (100), 115 (13), 91 (5). IR (liquid
film): 3396, 2972, 2927, 1486, 1240, 1053, 773 cm–1. Anal. Calcd
for C11H12O2: C, 74.98; H, 6.86; O, 18.16. Found : C, 74.82; H, 6.91.
1
Scheme 5
Allylmetallation of Aldehydes
To a solution of metallylmagnesium chloride 3 (0.6 M, 6.3 mmol)
in THF was added dropwise aldehyde 2 (2.1 mmol) in THF (10 mL)
at –20 °C. At the end of the addition, the mixture was stirred for 1 h
at r.t. and quenched with an aq soln of NH4Cl. The aq layer was ex-
tracted with EtOAc (2 20 mL). The combined organic layers were
washed with H2O and brine, dried (MgSO4), and concentrated. The
crude product was purified by column chromatography on silica gel
(hexane–EtOAc mixtures).
References
(1) (a) Aizawa, Y.; Kanaï, T.; Fujita, T.; Yoshioka, H.;
Yoshioka, T. Heterocycles 1991, 32, 285. (b) Holley, J. H.;
Hadley, K. W.; Turner, C. E. J. Pharm. Sci. 1975, 892.
(c) Mc Hale, D.; Green, J. J. Chem. & Ind. 1962, 1867.
(d) Benslimane, A. F.; Pouchus, Y. F.; Verbist, J. F.; Petit, J.
Y.; Brion, J. D.; Welin, L. J. Clin. Pharmacol. 1995, 35,
298. (e) Schweizer, E. E.; Meeder-Nyez, D. Chromenes,
Chromanones and Chromones, 2H and 4H-1-Benzopyrans;
Ellis, G. P., Ed.; John Wiley and sons: New York, 1977,
Chap. II, 81; and references cited therein. (f) Dave, E.;
Kusuni, T.; Ishitsuka, M.; Iwaschita, T.; Kakisawa, H.
Heterocycles 1984, 22, 2301. (g) Nomura, T.; Fukai, T.;
Hano, Y.; Tsukamoto, K. Heterocycles 1983, 20, 661.
(h) Ellis, G. P. In The Chemistry of Heterocyclic
Compounds, Chromenes, Chromanes, and Chromones;
Weissberger, A.; Taylor, E. C., Eds.; John Wiley: New York,
1977, Chap. II, 13.
Epoxidation of Homoallylic Alcohols
To a solution of homoallylic alcohol 4 (2.4 mmol) in CH2Cl2 (15
mL) was added at 0 °C a solution of m-CPBA (1.2 g, 4.8 mmol) in
CH2Cl2 (20 mL) and the mixture was stirred at this temperature for
4 h. After filtration, the solution was concentrated and then the
crude product was diluted with EtOAc (30 mL) and washed with aq
NaHCO3 (20 %, 3 20 mL) and brine, dried (MgSO4), and concen-
trated. The residue was purified by column chromatography on sil-
ica gel (hexane–EtOAc mixtures).
Cyclisation of Epoxides
Method A: A solution of epoxide 5 (2.57mmol) in THF (5 mL) at 0
°C was treated with AlCl3 (5.15 mmol). After 1 h, an aq soln of
NH4Cl (10 mL) was added, the aq layer was extracted with EtOAc
(2 20 mL) and the combined organic layers were washed with
brine, dried (MgSO4), and concentrated. The residue was purified
by column chromatography on silica gel (hexane–EtOAc mixtures)
to give the bicyclic compound 7.
(2) Bouzbouz, S.; Goujon, J. Y.; Deplanne, J.; Kirschleger, B.
Eur. J. Org. Chem. 2000, 3223.
(3) Bell, D.; Davies, M. R.; Green, G. R.; Mann, I. S. Synthesis
1995, 707.
(4) (a) Rochfort, S. J.; Metzger, R.; Hobbs, L.; Capon, R. J. Aust.
J. Chem. 1996, 49, 1217. (b) Van Rensburg, H.; Van
Heerden, P. S.; Bezuidenhoudt, B. C. B.; Ferreira, D.
Tetrahedron Lett. 1997, 38, 3089. (c) Covington, A. D.
Chem. Soc. Rev. 1997, 111.
(5) (a) Sukbok, C.; Grubbs, R. H. J. Org. Chem. 1998, 63, 864.
(b) Chauder, B. A.; Kalinin, A. V.; Snieckus, V. Synthesis
2001, 140. (c) Larock, R. C.; Wei, L.; Hightowei, T. R.
Synlett 1998, 522. (d) Solladié, G.; Boeffel, D.; Maignan, J.
Tetrahedron 1996, 52, 2065. (e) Chauder, B. A.; Lopes, C.
C.; Lopes, R. S. C.; Da Silva, A. J. M.; Snieckus, V.
Synthesis 1998, 279. (f) Cruz-Almanza, R.;Perez-Florès, F.;
Lemini, C. Heterocycles 1994, 37, 759. (g) Garcias, X.;
Ballester, P.; Saà, J. M. Tetrahedron Lett. 1991, 32, 7739.
(6) David, M.; Boustie, J.; Peilloux, A.; Poupon, E.; Amoros,
M.; Sauleau, A. Pharmaceutical Sciences 1997, 3, 305.
(7) Kocienski, P. J. Protecting Groups; Georg Thieme Verlag:
New York NY, 1994.
A solution of 7 (2 mmol) in benzene (20 mL) with TsOH H2O (75
mg, 0.4mmol) was refluxed for 16 h. After cooling, the solution was
washed with aq NaHCO3, brine, dried (MgSO4), and concentrated.
The crude product was purified by column chromatography on sili-
ca gel (hexane–EtOAc mixtures) to give chromenemethanol 1.
Method B: A solution of epoxide 5 (2.57 mmol) and CSA (23.9 mg,
4 mol%) in benzene (10 mL) was refluxed for 2 h. After cooling, the
solution was washed with aqueous NaHCO3, brine, dried (MgSO4),
and concentrated. The crude product was purified by column chro-
matography on silica gel (hexane–EtOAc mixtures) to give chrome-
nemethanol 1.
Typical Data for New Compounds 7
7a: 1H NMR (200 MHz, DMSO), 1.54 (s, 3 H, CH3), 2.06 (d, 1 H,
J = 12 Hz, CH), 2.16 (dd, 1 H, J = 4.6Hz, J = 12Hz, CH), 3.74 (d, 1
Synlett 2002, No. 2, 322–324 ISSN 0936-5214 © Thieme Stuttgart · New York