J . Org. Chem. 2002, 67, 3459-3463
3459
Sequ en ced Rea ction s w ith Sa m a r iu m (II) Iod id e. Sequ en tia l
In tr a m olecu la r Refor m a tsk y/Nu cleop h ilic Acyl Su bstitu tion
Rea ction s for th e Syn th esis of Med iu m -Sized Ca r bocycles
Gary A. Molander,* Giles A. Brown, and Isabel Storch de Gracia
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6323
gmolandr@sas.upenn.edu
Received J anuary 11, 2002
Samarium(II) iodide was used to access eight- and nine-membered carbocycles via a domino reaction
comprised of a Reformatsky reaction followed by a nucleophilic acyl substitution reaction. This
method represents a general and efficient approach to a variety of highly functionalized,
stereodefined carbocycles.
In tr od u ction
framework.7 Because of the well-known entropic and
enthalpic factors associated with the formation of medium-
sized rings, these carbon-carbon bond-forming reactions
are considered quite challenging.8 In fact, the number of
general methods for preparing medium-sized carbocycles
by cyclization or cycloaddition (annulation) reactions from
acyclic precursors is relatively small.7a,9 Methods that
have been developed to access this type of carbon
framework10 include oxy-Cope rearrangements,11 Whar-
ton/Grob fragmentations,12 metathesis reactions,13 transi-
tion metal-catalyzed cycloaddition reactions,14 and a
variety of SmI2 sequenced reactions.3b,15
Samarium(II) iodide (SmI2) was introduced to the
organic chemistry community as a reducing agent over
20 years ago.1 Since that time it has become the reagent
of choice for a variety of selective reactions.2 Many of the
earlier reports concentrated on the use of SmI2 as a
reductive coupling agent for a single transformation.
However, it soon became apparent that this unique
reagent could also be employed for a variety of sequential
processes.3 Further enhancing the scope of SmI2 in any
domino reaction is the ability to adjust the reactivity and/
or selectivity of the process by varying different reaction
parameters. For example, catalysts,1,4 solvent effects,5 or
photochemical irradiation of the reaction mixture6 can
all be utilized to advantage in carrying out desired
transformations. This ability to adjust the reaction
conditions while using SmI2 greatly facilitates its use for
a variety of sequential processes (both radical and
anionic) because the reductant can be selectively tuned
for each individual step of a multistep process.
On the basis of previous studies in our laboratories,
an additional domino process leading to medium-sized
rings was visualized. When SmI2 is used as the promoter
for an intramolecular Reformatsky reaction, the observed
products are stereodefined lactones.16 Because lactones
(7) (a) Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757. (b)
Oishi, T.; Ohtsuks, Y. In Studies in Natural Products Synthesis; Atta-
ur-Rahman, Ed.; Elsevier: Amsterdam, 1989; Vol. 3, p 73. (c) Rigby,
J . H. In Studies in Natural Products Synthesis; Atta-ur-Rahman, Ed.;
Elsevier: Amsterdam, 1993; Vol. 12, p 233.
(8) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
(9) Molander, G. A. Acc. Chem. Res. 1998, 31, 603.
(10) (a) Stach, H.; Hesse, M. Tetrahedron 1988, 44, 1573. (b) Mehta,
G.; Singh, V. Chem. Rev. 1999, 99, 881. (c) Boivin, J .; Pothier, J .;
Ramos, L.; Zard, S. Z. Tetrahedron Lett. 1999, 40, 9239. (d) Lee, T. V.;
Roden, F. S.; Porter, J . R. J . Chem. Soc., Perkin Trans. 1 1989, 2139.
(e) MacDonald, T. L.; O’Dell, D. E. J . Org. Chem. 1981, 46, 1501. (f)
Suginome, H.; Kondoh, T.; Gogonea, C.; Singh, V.; Goto˜, H.; Osawa,
E. J . Chem. Soc., Perkin Trans. 1 1995, 69.
(11) (a) Bluthe, N.; Malacria, M.; Gore, J . Tetrahedron 1984, 40,
3277. (b) J anardhanam, S.; Shanmugam, P.; Rajagopalan, K. Synth.
Commun. 1993, 23, 311. (c) J anardhanam, S.; Rajagopalan, K. J . Chem.
Soc., Perkin Trans. 1 1992, 2727. (d) Clive, D. L. J .; Russel, C. G.; Suri,
S. J . Org. Chem. 1982, 47, 1632.
(12) (a) Grob, C. A. Angew. Chem., Int. Ed. Engl. 1969, 8, 535. (b)
Grob, C. A.; Baumann, W. Helv. Chim. Acta 1955, 38, 594. (c) Wharton,
P. S.; Hiegel, G. A. J . Org. Chem. 1965, 30, 3254. (d) Garst, M. E.;
Roberts, V. A.; Prussin, C. J . Org. Chem. 1982, 47, 3969. (e) Amann,
C. M.; Fisher, P. V.; Pugh, M. L.; West, F. G. J . Org. Chem. 1998, 63,
2806. (f) Caine, D.; McCloskey, C. J .; Van Derveer, D. J . Org. Chem.
1985, 50, 175. (g) Zhang, W.; Dowd, P. Tetrahedron Lett. 1996, 37,
957. (h) Tietze, L.-F.; Reichert, U. Angew. Chem., Int. Ed. Engl. 1980,
19, 830. (i) Westen, H. H. Helv. Chim. Acta 1964, 47, 575. (j) Patel, H.
A.; Dev, S. Tetrahedron 1981, 37, 1577.
(13) (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (b)
Fu¨rstner, A. Top. Catal. 1997, 4, 285. (c) Schuster, M.; Blechert, S.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2036. (d) Fu¨rstner, A.; Thiel,
O. R.; Ackermann, L.; Schanz, H.-J .; Nolan, S. P. J . Org. Chem. 2000,
65, 2204.
The development of efficient and novel approaches to
medium-sized carbocycles is a worthy endeavor for
organic chemists. Medium-sized carbocycles are incor-
porated into a variety of natural products either as
isolated moieties or as part of a bicyclic or polycyclic
(1) Girard, P.; Namy, J .-L.; Kagan, H. B. J . Am. Chem. Soc. 1980,
102, 2693.
(2) (a) Molander, G. A. Org. React. 1994, 46, 211. (b) Soderquist, J .
A. Aldrichim. Acta 1991, 24, 15. (c) Molander, G. A. Chem. Rev. 1992,
92, 29. (d) Sasaki, M.; Collin, J .; Kagan, H. B. New J . Chem. 1992, 16,
89.
(3) (a) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307. (b)
Molander, G. A.; Harris, C. R. Tetrahedron 1998, 54, 3321.
(4) (a) Molander, G. A.; McKie, J . A. J . Org. Chem. 1992, 57, 3132.
(b) Machrouhi, F.; Hamann, B.; Namy, J .-L.; Kagan, H. B. Synlett 1996,
633. (c) Miller, R. S.; Sealy, J . M.; Shabangi, M.; Kuhlman, M. L.;
Fuchs, J . R.; Flowers, R. A., II. J . Am. Chem. Soc. 2000, 122, 7718.
(5) (a) Inanaga, J .; Ishikawa, M.; Yamaguchi, M. Chem. Lett. 1987,
1485. (b) Ruder, S. M. Tetrahedron Lett. 1992, 33, 2621. (c) Hasegawa,
E.; Curran, D. P. J . Org. Chem. 1993, 58, 5008. (d) Namy, J .-L.;
Colombo, M.; Kagan, H. B. Tetrahedron Lett. 1994, 35, 1723. (e) Cabri,
W.; Canadiani, I.; Colombo, M.; Franzoi, L.; Bedeschi, A. Tetrahedron
Lett. 1995, 36, 949. (f) Hamann, B.; Namy, J .-L.; Kagan, H. B.
Tetrahedron 1996, 52, 14225.
(6) (a) Skene, W. G.; Scaiano, J . C.; Cozens, F. L. J . Org. Chem. 1996,
61, 7918. (b) Ogawa, A.; Sumino, Y.; Nanke, T.; Ohya, S.; Sonoda, N.;
Hirao, T. J . Am. Chem. Soc. 1997, 119, 2745. (c) Ogawa, A.; Ohya, S.;
Hirao, T. Chem. Lett. 1997, 275.
10.1021/jo020027w CCC: $22.00 © 2002 American Chemical Society
Published on Web 04/19/2002