218 Chem. Res. Toxicol., Vol. 23, No. 1, 2010
Felim et al.
(10) De Win, M. M. L., Jager, G., Booij, J., Reneman, L., Schilt, T., Lavini,
C., Olabarriaga, S. D., den Heeten, G. J., and van den Brink, W. (2008)
Sustained effects of ecstasy on the human brain: a prospective
neuroimaging study in novel users. Brain 131, 2936–2945.
(11) Gudelsky, G. A., and Yamamoto, B. K. (2008) Action of 3,4-
methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic,
serotonergic and cholinergic neurons. Pharmacol., Biochem. BehaV.
90, 198–207.
(12) Capela, J. P., Carmo, H., Remiao, F., Lourdes Bastos, M., Meisel,
A., and Carvalho, F. (2009) Molecular and cellular mechanisms of
ecstasy-induced neurotoxicity: an overview. Mol. Neurobiol. 39, 210–
271, and references therein.
(13) Goni-Allo, B., Puerta, E., Mathuna, B. O., Hervias, I., Lasheras, B.,
de la Torre, R., and Aguirre, N. (2008) On the role of tyrosine and
peripheral metabolism in 3,4-methylenedioxymethamphetamine-
induced serotonin neurotoxicity in rats. Neuropharmacology 54, 885–
900.
(14) Esteban, B., O’Shea, E., Camarero, J., Sanchez, V., Green, A. R., and
Colado, M. I. (2001) 3,4-Methylenedioxymethamphetamine induces
monoamine release, but not toxicity, when administered centrally at
a concentration occurring following a peripherally injected neurotoxic
dose. Psychopharmacology 154, 251–260.
quently, caution is advised when comparing this toxicity with
that induced by the catecholamine derivatives (38). This
conclusion can be extended to MDMA, also bearing a protected
catechol so that in studies dealing with MDMA toxicity, there
is a need to distinguish the toxicity ascribed to MDMA itself
from that depending on MDMA biotransformation leading to
catechol metabolites such as HHMA and the thioether conjugates.
A general view, including qualitative as well as quantitative
changes in toxicity, can be drawn. The parent drug (MDMA)
associated with some adverse effects (12) is metabolized to
redox active forms such as HHMA, which would induce, in
cells endowed with low antioxidant defenses (Table 1), an
oxidative toxicity resulting in necrosis (Table 3). These active
forms could be further metabolized (e.g., by phase II conjugation
reactions) to compounds such as MMMA able to induce a
different kind of toxicity resulting in apoptosis (Table 3). This
point of view might be considered when evaluating the in vivo
situation, in which enantioselective metabolic reactions play a
pivotal role.
(15) Monks, T. J., Jones, D. C., Bai, F., and Lau, S. S. (2004) The role of
metabolism in 3, 4-(()-methylenedioxyamphetamine and 3,4-(()-
methylenedioxymethamphetamine (Ecstasy) toxicity. Ther. Drug
Monit. 26, 132–136.
Acknowledgment. We thank Dr. M.-B. Fleury, Emeritus
Professor at the Paris Descartes University, for fruitful discus-
sions. We also thank Carmen Navarro for her technical
assistance. This research was made possible thanks to grants
MEC (Spain) BIO2007-65662, EC VI FP projects A-Cute-Tox,
and LSHB-CT-2004-512051 (to J.E.O’C.), and to the joint
financial support of the Mission Interministe´rielle de Lutte contre
la Drogue et la Toxicomanie (MILDT) and the Institut National
de la Sante´ et de la Recherche Me´dicale (INSERM) (Appel a`
projets commun 2007 MILDT-INSERM, Recherche sur les
drogues et la toxicomanie) (to M.L.) A.F. thanks MILDT
together with INSERM for a Ph.D. grant.
(16) Segura, M., Jordi, O., Farre´, M., McLure, J. A., Pujadas, M., Pizarro,
N., Llebaria, A., Joglar, J., Roset, P. N., Segura, J., and de la Torre,
R. (2001) 3,4-Dihydroxymethamphetamine (HHMA). A major in vivo
3, 4-methylenedioxymethamphetamine (MDMA) metabolite in hu-
mans. Chem. Res. Toxicol. 14, 1203–1208.
(17) Perfetti, X., O’Mathuna, B., Pizarro, N., Cuyas, E., Khymenets, O.,
Almeida, B., Pellegrini, M., Pichini, S., Lau, S. S., Monks, T. J., Farre´,
M., Pascual, J. A., Joglar, J., and de La Torre, R. (2009) Neurotoxic
thioether adducts of 3,4-methylenedioxymethamphetamine identified
in human urine after ecstasy ingestion. Drug Metab. Dispos. 37, 1448–
1455.
(18) Felim, A., Urios, A., Neudo¨rffer, A., Herrera, G., Blanco, M., and
Largeron, M. (2007) Bacterial plate assays and electrochemical
methods: an efficient tandem for evaluating the ability of catechol-
thioether metabolites of MDMA (“ecstasy”) to induce toxic effects
through redox-cycling. Chem. Res. Toxicol. 20, 685–693.
(19) Mueller, M., Yuan, J., Felim, A., Neudo¨rffer, A., Peters, F. T., Maurer,
H. H., McCann, U. D., Largeron, M., and Ricaurte, G. A. (2009)
Further studies on the role of metabolites in (()-3,4-methylene-
dioxymethamphetamine-induced serotonergic neurotoxicity. Drug
Metab. Dispos. 37, 2079–2086.
Supporting Information Available: Experimental proce-
dures for the determination of enantiomeric excess of com-
pounds 6 and 8; 1H and 13C NMR spectra of (()-HHMA, (()-
MMMA, and R-(-)-HHMA and its synthetic intermediates,
together with aminoalcohol derivatives 7 and 9; analytical HPLC
chromatograms of (()-HHMA, (()-MMMA, R-(-)-HHMA,
and of aminoalcohol 9. This material is available free of charge
(20) Jones, D. C., Duvauchelle, C., Ikegami, A., Olsen, C. M., Lau, S. S.,
de la Torre, R., and Monks, T. J. (2005) Serotonergic neurotoxic
metabolites of ecstasy identified in rat brain. J. Pharmacol. Exp. Ther.
313, 422–431.
(21) Erives, G. V., Lau, S. S., and Monks, T. J. (2008) Accumulation of
neurotoxic thioether metabolites of 3,4-(()-methylenedioxymetham-
phetamine in rat brain. J. Pharmacol. Exp. Ther. 324, 284–291.
(22) Pizarro, N., de la Torre, R., Joglar, J., Okumura, N., Perfetti, X., Lau,
S. S., and Monks, T. J. (2008) Serotonergic neurotoxic thioether
metabolites of 3,4-methylenedioxymethamphetamine (MDMA, “ec-
stasy”): synthesis, isolation and characterization of diastereoisomers.
Chem. Res. Toxicol. 21, 2272–2279.
(23) Meyer, M. R., Peters, F. T., and Maurer, H. H. (2008) The role of
human hepatic cytochrome P450 isoenzymes in the metabolism of
racemic 3, 4-methylenedioxymethamphetamine and its enantiomers.
Drug Metab. Dispos. 36, 2345–2354.
(24) Anderson, G. M., Braun, G., Braun, U., Nichols, D. E., and Shulgin,
A. T. (1978) Absolute Configuration and Psychotomimetic Activity,
in Quasar Research Monograph 22 (Barnett, G., Trisc, M., and
Willette, R., Eds.) pp 8-15, National Institute on Drug Abuse,
Washington, DC.
(25) Hiramatsu, M., Nabeshima, T., Kameyama, T., Maeda, Y., and Cho,
A. K. (1989) The effect of optical isomers of 3,4-methylene-
dioxymethamphetamine (MDMA) on stereotyped behavior in rats.
Pharmacol., Biochem. BehaV. 33, 343–347.
(26) Johnson, M. P., Hoffman, A. J., and Nichols, D. E. (1986) Effects of
the enantiomers of MDA, MDMA and related analogues on [3H]se-
rotonin and [3H]dopamine release from superfused rat brain slices.
Eur. J. Pharmacol. 132, 269–276.
(27) Fantegrossi, W. E., Godlewski, T., Karabenick, R. L., Stephens, J. M.,
Ullrich, T., Rice, K. C., and Woods, J. H. (2003) Pharmacological
characterization of the effects of 3,4-methylenedioxymethamphetamine
(“ecstasy”) and its enantiomers on lethality, core temperature, and
locomotor activity in singly housed and crowded mice. Psychophar-
macology 166, 202–211.
References
(1) Milroy, C. M., Clark, J. C., and Forrest, A. R. W. (1996) Pathology
of deaths associated with “ecstasy” and “eve” misuse. J. Clin. Pathol.
49, 149–153.
(2) Walubo, A., and Seger, D. (1999) Fatal multi-organ failure after
suicidal overdose with MDMA, “ecstasy”: case report and review of
the literature. Hum. Exp. Toxicol. 18, 119–125.
(3) Fineschi, V., Centini, F., Mazzeo, E., and Turillazzi, E. (1999) Adam
(MDMA) and Eve (MDA) misuse: an immunohistochemical study
on three fatal cases. Forensic Sci. Int. 104, 65–74.
(4) Cole, J. C., and Sumnall, H. R. (2003) Altered states: the clinical effects
of ecstasy. Pharmacol. Ther. 98, 35–58.
(5) Ricaurte, G. A., and McCann, U. D. (2005) Recognition and
management of complications of new recreational drug use. Lancet
365, 2137–2145.
(6) Green, A. R., Mechan, A. O., Elliot, J. M., O’Shea, E., and Colado,
M. I. (2003) The pharmacology and clinical pharmacology of 3,4-
methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol.
ReV. 55, 463–508, and references therein.
(7) Lyles, J., and Cadet, J. L. (2003) Methylenedioxymethamphetamine
(MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms.
Brain Res. ReV. 42, 155–168, and references therein.
(8) Morton, J. (2005) Ecstasy: pharmacology and neurotoxicity. Curr.
Opin. Pharmacol. 5, 79–86.
(9) Baumann, M. H., Wang, X., and Rothman, R. B. (2007) 3,4-
methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a
reappraisal of past and present findings. Psychopharmacology 189,
407–424.