Gold(III) Complexes with a Picoline-functionalized N-Heterocyclic Carbene
A. Hours, D. Lesage, J.-C. Tabet, J.-P. Goddard, V. Gandon, L.
Cavallo, L. Fensterbank, M. Malacria, S. P. Nolan, Chem. Eur. J.
2009, 15, 3243–3260; e) R. S. Paton, F. Maseras, Org. Lett. 2009,
11, 2237–2240; f) S. Díez-González, N. Marion, S. P. Nolan,
Chem. Rev. 2009, 109, 3612–3676; g) J. Urbano, A. J. Hormigo,
P. de Frémont, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez,
Chem. Commun. 2008, 759–761; h) N. Marion, S. P. Nolan,
Chem. Soc. Rev. 2008, 37, 1776–1782; i) N. Marion, P. Carlqvist,
R. Gealageas, P. de Frémont, F. Maseras, S. P. Nolan, Chem. Eur.
J. 2007, 13, 6437–6451; j) S. M. Kim, J. H. Park, S. Y. Choi,
Y. K. Chung, Angew. Chem. 2007, 119, 6284; Angew. Chem. Int.
Ed. 2007, 46, 6172–6275.
well stirred solution was added solid AgBF4 (0.07 g, 0.36 mmol) upon
which a precipitate of AgBr was formed immediately. After a stirring
time of 15 min solid materials were filtered off. The solvent was re-
moved in vacuo and the residue was recrystallized from acetone/Et2O.
This afforded the title substance as a light-green microcrystalline pow-
1
der. Yield: 44% (0.09 g). H NMR (200 MHz, [D6]DMSO, 30 °C): δ
= 9.26–9.02 (m, 1 H, PyH), 8.74–8.25 (m, 1 H, PyH), 8.09–7.87 (m,
3 H, PyH/ImHH), 7.55–7.41 (m, 1 H, PyH), 6.12 (s, 2 H, NImH-CH2-
Py), 4.01 (s, 3 H, NImH-CH3). 13C NMR (125.8 MHz, [D6]DMSO,
30 °C): δ = 172.9, 148.3, 138.8, 127.3, 125.6, 123.7, 123.0, 122.5,
54.3, 37.4. MS (ESI pos): m/z 595 [M+BF3]+. EA: calcld for
[4] M. Pazˇický, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov, F.
Rominger, C. Jäkel, A. S. K. Hashmi, M. Limbach, Organometal-
lics 2010, 29, 4448–4458.
C10H11N3AuBr2BF4 (616.80): C 19.47, H 1.80, N 6.81. Found: C
19.65, H 1.89, N 6.79.
[5] a) P. de Frémont, N. Marion, S. P. Nolan, J. Organomet. Chem.
2009, 694, 551–560; b) H. G. Raubenheimer, S. Cronje, Chem.
Soc. Rev. 2008, 37, 1998–2011; c) J. L. Hickey, R. A. Ruhayel,
P. J. Barnard, M. V. Baker, S. J. Berners-Price, A. Filipovska, J.
Am. Chem. Soc. 2008, 130, 12570–12571; d) M. M. Jellicoe, S. J.
Nichols, B. A. Callus, M. V. Baker, P. J. Barnard, S. J. Berners-
Price, J. Whelan, G. C. Yeoh, A. Filipovska, Cancinogenesis
2008, 29, 1124–1133; e) I. J. Lin, C. S. Vasam, Coord. Chem. Rev.
2007, 251, 642–670; f) M. V. Baker, P. J. Barnard, S. J. Berners-
Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton, A. H. White,
Dalton Trans. 2006, 3708–3715; g) M. V. Baker, P. J. Barnard,
S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton,
A. H. White, J. Organomet. Chem. 2005, 690, 5625–5635; h) P. J.
Barnard, M. V. Baker, S. J. Berners-Price, D. A. Day, J. Inorg.
Biochem. 2004, 98, 1642–1647.
General procedure for the reactions of 5 with various ligands: 3
(50 mg, 82 μmol) and AgBF4 (16 mg, 82 μmol) were suspended in
absolute acetone (20 mL) and stirred for 0.5 h. To this mixture two
equivalents of Ag(acetate), Ag(benzoate) or one equivalent Ag2(oxal-
ate), or a mixture of two equivalents AgBF4/NaOPh or AgBF4/NaSPh
were added at –40 °C. After the reaction mixtures were allowed to
warm to room temperature they were stirred for additional 4 h. The
formed AgBr was removed by filtration through Celite and the solvent
was distilled off in a vacuo. The residues were dissolved in a minimum
of DCM and crystallized by slow gas phase diffusion of Et2O. In the
case of the phenolate, elemental gold formed immediately and only
1
the free imidazolium salt could be detected by H-NMR spectroscopy.
From the reaction with thiophenolate a yellow, insoluble solid was
obtained, which was not further characterized. The reaction with the
silver carboxylates afforded crystals of the dimeric AuI complex 6,
which were characterized by 1H-NMR spectroscopy and X-ray diffrac-
[6] J. Lemke, A. Pinto, P. Niehoff, V. Vasylyeva, N. Metzler-Nolte,
Dalton Trans. 2009, 7063–7070.
[7] M. Boronat, A. Corma, C. González-Arellano, M. Iglesias, F. San-
chez, Organometallics 2010, 29, 134–141.
1
tion. H NMR (200 MHz, [D6]DMSO, 30 °C): δ = 8.91 (d, 1 H), 8.37
[8] a) M. K. Samantaray, C. Dash, M. M. Shaikh, K. Pang, R. J.
Butcher, P. Ghosh, Inorg. Chem. 2011, 50, 1840–1848; b) M. K.
Samantaray, K. Pang, M. M. Shaikh, P. Ghosh, Dalton Trans.
2008, 4893–4902; c) F. J.-B. dit Dominique, H. Gornitzka, A.
Sournia-Saquet, C. Hemmert, Dalton Trans. 2009, 340–352.
[9] a) S. Gaillard, A. M. Z. Slawin, A. T. Bonura, E. D. Stevens, S. P.
Nolan, Organometallics 2010, 29, 394–402; b) M. C. Jahnke, T.
Pape, F. E. Hahn, Z. Anorg. Allg. Chem. 2010, 636, 2309–2314;
c) S. Gaillard, X. Bantreil, A. M. Z. Slawin, S. P. Nolan, Dalton
Trans. 2009, 6967–6971; d) R. Jothibasu, H. V. Huynh, L. L. Koh,
J. Organomet. Chem. 2008, 693, 374–380; e) P. de Frémont, R.
Singh, E. D. Stevens, J. L. Petersen, S. P. Nolan, Organometallics
2007, 26, 1376–1385; f) H. G. Raubenheimer, P. J. Olivier, L.
Lindeque, M. Desmet, J. Hruˇsak, G. J. Kruger, J. Organomet.
Chem. 1997, 544, 91–100; g) P. Kühlkamp, H. G. Raubenheimer,
J. S. Field, M. Desmet, J. Organomet. Chem. 1998, 552, 69–74.
[10] C. Hirtenlehner, C. Krims, J. Hölbling, M. List, M. Zabel, M.
Fleck, R. J. F. Berger, W. Schoefberger, U. Monkowius, Dalton
Trans. 2011, published online DOI:10.1039/C1DT11175B.
(t, 1 H), 8.10 (d, 1 H), 7.83 (t, 1 H), 7.66 (d, 2 H), 5.98 (br. s, 1 H),
3.82 (s, 3 H).
Acknowledgments
We thank Prof. G. Knör for fruitful discussions and generous support
of the experimental work.
References
[1] a) Gold Chemistry: Applications and Future Directions in the Life
Sciences (Ed.: F. Mohr), Wiley-VCH, Weinheim, 2009; b) Mod-
ern Supramolecular Gold Chemistry (Ed.: A. Laguna), Wiley-
VCH, Weinheim, 2008; c) M. C. Jahnke, F. E. Hahn, Top. Or-
ganomet. Chem. 2010, 30, 95–129; d) M. C. Jahnke, F. E. Hahn
in: N-Heterocyclic Carbenes: From Laboratory Curiosities to Ef-
ficient Synthetic Tools (Ed.: S. Díez-González), RSC Publishing, [11] V. J. Scott, J. A. Labinger, J. E. Bercaw, Organometallics 2010,
2011, pp. 1–41; e) J. G. Garrison, W. J. Youngs, Chem. Rev. 2005, 29, 4090–4096.
105, 3978–4008; f) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. [12] C. Topf, C. Hirtenlehner, M. Zabel, M. List, M. Fleck, U. Mon-
Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109,
3561–3598; g) I. J. B. Lin, C. S. Vasam, Can. J. Chem. 2005, 83,
812–825.
kowius, Organometallics 2011, 30, 2755–2764.
[13] C. Topf, C. Hirtenlehner, U. Monkowius, J. Organomet. Chem.
2011, 696, 3274–3278.
[2] a) A. Rit, T. Pape, A. Hepp, F. E. Hahn, Organometallics 2011,
30, 334–347; b) A. Rit, T. Pape, F. E. Hahn, J. Am. Chem. Soc.
2010, 132, 4572–4573; c) H. M. J. Wang, I. J. B. Lin, Organome-
tallics 1998, 17, 972–975.
[3] a) X. Zeng, R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem.
2010, 122, 954–957; Angew. Chem. Int. Ed. 2010, 49, 942–945;
b) A. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem.
2009, 121, 8396–8398; Angew. Chem. Int. Ed. 2009, 48, 8247–
8249; c) N. Marion, R. S. Ramón, S. P. Nolan, J. Am. Chem. Soc.
[14] V. J. Catalano, A. L. Moore, Inorg. Chem. 2005, 44, 6558–6566.
[15] a) V. J. Catalano, L. B. Munro, C. E. Strasser, A. F. Samin, Inorg.
Chem. 2011, published online, DOI:10.1021/ic201053t; b) A. K.
Ghosh, V. J. Catalano, Eur. J. Inorg. Chem. 2009, 1832–1843; c)
V. J. Catalano, A. O. Etogo, Inorg. Chem. 2007, 46, 5608–5615;
d) V. J. Catalano, A. O. Etogo, J. Organomet. Chem. 2005, 690,
6041–6050; e) V. J. Catalano, A. L. Moore, J. Shearer, J. Kim,
Inorg. Chem. 2009, 48, 11362–11375; f) C. E. Strasser, V. J. Cata-
lano, J. Am. Chem. Soc. 2010, 132, 10009–10011.
2009, 131, 448–449; d) N. Marion, G. Lemiére, A. Correa, C. [16] M. Tilset, O. Andell, A. Dhindsa, M. Froseth, WO 02/49758 A1,
Costabile, R. S. Ramón, X. Moreau, P. de Frémont, R. Dahmane, 2001.
Z. Anorg. Allg. Chem. 2011, 2129–2134
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2133