Table 1. Optimization of Cationic Palladium
Complex-Catalyzed Tandem Addition of
ortho-Boronate-Substituted Cinnamic Ketones and Interanl
Alkynesa
Table 2. Cationic Palladium Complex-Catalyzed Tandem
Addition of ortho-Boronate-Substituted Cinnamic Ketones and
Internal Alkynesa
entry cat. (mol %)
solvent
MeOH
MeOH
MeOH
temp (°C) time (h) yield (%)b
1
A (3)
A (3)
B (3)
B (3)
B (3)
C (1.5)
D (3)
D (3)
D (3)
D (3)
D (3)
D (3)
50
50
50
50
50
80
80
80
80
80
25
50
48
48
48
48
48
48
48
48
48
48
48
20
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
96
2c
3
4c
5
MeOH
dioxane/H2O
dioxane/H2O
dioxane
dioxane
dioxane
dioxane
dioxane/H2O
dioxane/H2O
entry
1
R4≡ R5
Product
Yield (%)b
6
7
1
1a
1a
1a
1a
1a
1b
1b
1b
1b
1b
1c
1d
1e
1f
2a
2b
2c
2d
2e
2a
2b
2c
2d
2e
2a
2a
2a
2a
3aa
3ab
3ac
3ad
3ae
3ba
3bb
3bc
3bd
3be
3ca
3da
3ea
3fa
>99
93
78
82
85
>99
>99
57
89
75
8d
9e
10f
11
12
2
3c
4
5c
6
>99
a Reaction conditions: 1a (0.15 mmol), 2a (0.18 mmol). b Isolated yield.
c KF (1.5 equiv) was added. d Ba(OH)2 (1.5 equiv) was added. e K3PO4
(1.5 equiv) was added. f Amberlite IRA-400 (OH) (1.5 equiv) was added.
7
8c
9
10c
11d
12
13
14
NR
>99
>99
81
However, no methods have been reported for the control
of the C-1 stereogenic center. Thus far, the synthesis of
optically active indenes is limited to a few examples.6 An
expedient and promising method for the synthesis of indenes
is the rhodium-catalyzed tandem reactions of ortho-boronate-
substituted cinnamic ketones and alkynes.1b However, much
less attention has been paid to the asymmetric version of
this tandem reaction. Recently, cationic palladium species
has been shown to be highly active catalysts in the arylbo-
ronic acid initiated conjugate addition reaction by Miyaura’s
group7 and in several tandem reactions by our group.8 These
results prompted us to investigate the tandem reactions of
a Reaction conditions: 1 (0.15 mmol), 2 (0.18 mmol), [Pd(dppp)-
(H2O)2](OTf)2 (3 mol %) and dioxane/H2O (10/1), reaction time (24- 48 h).
b Isolated yield. c [Pd(dppp)(H2O)2](OTf)2 (4 mol %). d Reaction temperature
was 80 °C.
ortho-boronate-substituted cinnamic ketones and alkynes
under the catalysis of cationic palladium species. Herein we
report our results of the successful synthesis of the optically
active indenes.
(4) (a) Gassman, P. G.; Ray, J. A.; Wenthold, P. G.; Mickelson, J. W.
J. Org. Chem. 1991, 56, 5143. (b) Becker, C.; McLaughlin, M. Synlett 1991,
642. (c) Prough, J. D.; Alberts, A. W.; Deanna, A. A.; Gilfillian, J. L.;
Huff, J. W.; Smith, R. L.; Wiggins, J. M. J. Med. Chem. 1990, 33, 758. (d)
Singh, G.; Ila, H.; Junjappa, H. Synthesis 1986, 744. (e) Kimiaki, Y.;
Hideyoshi, M.; Akira, S. Bull. Chem. Soc. Jpn. 1986, 59, 3699. (f) Yoshida,
H.; Kato, M.; Ogata, T. J. Org. Chem. 1985, 50, 1145.
First, neutral and cationic palladium complexes with 2,2-
bipyridine (bpy) as ligand were chosen as the catalysts to
examine the tandem reactions of arylboronic ester 1a with
methyl 2-butynoate (2a). No reaction occurred even in the
case using dioxane/H2O as the solvent (Table 1, entries 1-6).
Then reactions of cationic palladium complex [Pd(dppp)-
(H2O)2](OTf)2 (3 mol %) as catalyst in dioxane (2 mL) were
examined. These reactions were also inactive even when
bases, which are believed to facilitate the transmetalation of
arylboronic compounds,7a were added at 80 °C (Table 1,
entries 8-10). When a dioxane/H2O (10/1) solvent mixture
was used instead of dioxane, the coupling product 3aa was
obtained in quantitative yield after 20 h (Table 1, entry 12).
Thus, arylboronic ester (0.15 mmol), alkyne (0.18 mmol),
[Pd(dppp)(H2O)2](OTf)2 (0.0045 mmol, 3 mol %), and
dioxane/H2O (10/1) at 50 °C were chosen as the optimized
conditions.
(5) (a) Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C. J. Org. Chem.
2007, 72, 251. (b) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett.
2005, 7, 4963. (c) Xi, Z.; Guo, R.; Mito, S.; Yan, H.; Kanno, K.; Nakajima,
K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252. (d) Yoshikawa, E.;
Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280.
(e) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc.
2006, 128, 202.
(6) Romines, K. R.; Lovasz, K. D.; Mizsak, S. A.; Morris, J. K.; Seest,
E. P.; Han, F.; Tulinsky, J.; Judge, T. M.; Gammill, R. B. J. Org. Chem.
1999, 64, 1733.
(7) (a) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004,
23, 4317. (b) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem.,
Int. Ed. 2003, 42, 2768.
(8) (a) Yang, M.; Zhang, X.; Lu, X. Org. Lett. 2007, 9, 5131. (b) Song,
J.; Shen, Q.; Xu, F.; Lu, X. Org. Lett. 2007, 9, 2947. (c) Liu, G.; Lu, X.
AdV. Synth. Catal. 2007, 349, 2247. (d) Liu, G.; Lu, X. J. Am. Chem. Soc.
2006, 128, 16504.
1406
Org. Lett., Vol. 11, No. 6, 2009