S. Boisnard, J. Zhu / Tetrahedron Letters 43 (2002) 2577–2580
2579
equate for the total synthesis of this natural product.
Consequently, an alternative synthetic sequence, i.e.
construction of B-O-C cyclophane followed by forma-
tion of the biphenyl macrocycle A-B was investigated.
The synthesis started from the known biaryl bisamino
acid 7,7 synthesized by a key Suzuki coupling14 and a
chiral quaternary ammonium salt catalyzed enantio-
selective alkylation of glycine template15 (Scheme 2).
The N-allyloxycarbamate protection of the amine
under standard conditions provided 8. Removal of a
tert-butyl ester without touching the N-tert butyloxy-
carbamate under the recently described conditions
(ZnBr2, CH2Cl2) met with marginal success.16 On the
other hand, a two-step sequence involving the mild
acidic treatment of 8 followed by reintroduction of
N-Boc function produced acid 9 in excellent overall
yield. Coupling of this acid with methyl amide 10
mediated by EDC–HOBt furnished 11, which was
then transformed to phenol 12 upon selective removal
of isopropyl ether (BCl3, CH2Cl2).
24, 1995. Chem. Abstr. 1996, 124: 233154x and
124:233155y.
2. (a) Ezaki, M.; Iwami, M.; Yamashita, M.; Kohsaka,
M.; Aoiki, H.; Imanaka, H. J. Antibiot. 1985, 38, 1453–
1461; (b) Uchida, I.; Shigematsu, N.; Ezaki, M.; Hashi-
moto, M. J. Antibiot. 1985, 38, 1462–1468; (c) Uchida,
I.; Ezaki, M.; Shigematsu, N.; Hashimoto, M. J. Org.
Chem. 1985, 50, 1341–1342; (d) Kannan, J. C.;
Williams, D. H. J. Org. Chem. 1987, 52, 5435–5437; (e)
Hempel, J. C.; Brown, F. K. J. Am. Chem. Soc. 1989,
111, 7323–7327; (f) Brown, F. K.; Hempel, J. C.;
Dixon, J. S.; Amato, S.; Mueller, L.; Jeffs, P. W. J.
Am. Chem. Soc. 1989, 111, 7328–7333.
3. For synthetic studies, see: (a) Schmidt, U.; Meyer, R.;
Leitenberger, V.; Lieberknecht, A.; Griesser, H. J.
Chem. Soc., Chem. Commun. 1991, 275–277; (b) Carl-
stro¨m, A. S.; Frejd, T. J. Chem. Soc., Chem. Commun.
1991, 1216–1217; (c) Schmidt, U.; Meyer, R.; Leiten-
berger, V. Griesser, H.; Lieberknecht, A. Synthesis
1992, 1025–1030; (d) Brown, A. G.; Edwards, P. D.
Tetrahedron Lett. 1990, 31, 6581–6584; (e) Brown, A.
G.; Crimmin, M. J.; Edwards, P. D. J. Chem. Soc., PT
1 1992, 123–130; (f) Carbonnelle, A.-C.; Zhu, J. Org.
Lett. 2000, 2, 3477–3480.
In sharp contrast to the cyclization of 6, the key
size-selective ring-forming process based on the
intramolecular SNAr reaction proceeded smoothly.5,17
Thus, treatment of 12 in DMF (0.002 M) in the pres-
ence of potassium carbonate furnished the 14-member
cyclophane as a mixture of two atropisomers in a 3/1
ratio. The 15-membered para,para cyclophane resulting
from the nucleophilic attack of the ring B 4-hydroxy
function was not formed because of its inherent higher
ring strain. The instability of cyclophane 13 towards
flash chromatography purification prompted us to
examine the one-pot tandem cyclization/methylation
processes. Thus, when the cycloetherifcation of 12
under defined conditions (K2CO3, 0.002 M in DMF)
deemed complete by TLC analysis, an excess of methyl
iodide was introduced to the reaction mixture to pro-
mote the methylation of the remaining free hydroxy
function. Under these conditions, the desired
cycloisodityrosine 5 was reproducibly isolated in greater
than 60% yield.
4. For a review, see: Itokawa, H.; Takeya, K.; Hitot-
suyanagi, Y.; Morita, H. The Alkaloids; Cordell, G. A.,
Ed.; Academic Press, 1997; Vol. 49, 301–387.
5. For synthetic studies, see: (a) Inaba, T.; Umezawa, I.;
Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Ogura,
K. J. Org. Chem. 1987, 53, 2957–2958; (b) Inoue, T.;
Inaba, T.; Umezawa, I.; Yuasa, M.; Itokawa, H.;
Ogura, K.; Komatsu, K.; Hara, H.; Hoshino, O. Chem.
Pharm. Bull. 1995, 43, 1325–1335; (c) Boger, D. L.;
Patane, M. A.; Zhou, J. J. Am. Chem. Soc. 1994, 116,
8544–8556; (d) Boger, D. L. Zhou, J.; Borzilleri, R. M.;
Nukui, S.; Castle, S. L. J. Org. Chem. 1997, 62, 2054–
2069; (e) Bigot, A.; Tran Huu Dau, E.; Zhu, J. J. Org.
Chem. 1999, 64, 6283–6296 and references cited therein.
6. Helynck, G.; Dubertret, C.; Frechet, D.; Leboul, J. J.
Antibiot. 1998, 51, 512–514.
In conclusion, we reported two synthetic approaches
to the bicyclic ring system of RP-66453. The higher
yield obtained in the cyclization of 12 relative to that
of 6 clearly indicated the appropriate direction to be
pursued. Further work is in progress and will be
reported in due course.
7. Boisnard, S.; Carbonnelle, A.-C.; Zhu, J. Org. Lett.
2001, 3, 2061–2064.
8. Krenitsky, P. J.; Boger, D. L. Tetrahedron Lett. 2002,
43, 407–410.
9. Zhu, J. Synlett 1997, 133–144.
10. (a) Rama, R. A. V.; Gurjar, M. K.; Reddy, K. L.;
Rao, A. S. Chem. Rev. 1995, 95, 2135–2167; (b)
Burgess, K.; Lim, D.; Martinez, C. I. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1077–1078; (c) Nicolaou, K. C.;
Boddy, C. N. C.; Bra¨se, S.; Winssinger, N. Angew.
Chem., Int. Ed. Engl. 1999, 38, 2096–2152; (d) Sawyer,
J. S. Tetrahedron 2000, 56, 5045–5065.
11. Vergne, C.; Bois-Choussy, M.; Ouazzani, J.; Beugel-
mans, R.; Zhu, J. Tetrahedron: Asymmetry 1997, 8,
391–398.
Acknowledgements
We thank CNRS for financial support. A doctoral
fellowship from this institute to S. Boisnard is grate-
fully acknowledged. We thank Professor Potier for his
interest in this work.
12. To proceed with the synthesis, all asymmetric carbon
centers were arbitrarily assigned as S configuration.
13. Using molecular sieves as additive is essential to the
success of this cyclization; Boisnard, S. Ph.D. disserta-
tion, Universite´ Paris Sud, December 2001.
References
1. Clerc, F. F.; Dubroeucq, M. C.; Helynck, G.; Leboul,
J.; Martin, J. P. FR 2720066 (WO 9532218) novembre