C O M M U N I C A T I O N S
In conclusion, cyanoxyl-mediated free-radical polymerization
with a biotin-derivatized arylamine initiator provides a straightfor-
ward strategy for generating biotin chain-terminated glycopolymers.
Streptavidin-biotin binding was verified by a SDS-PAGE gel shift
assay and the fabrication of a glycocalyx-mimetic surface achieved.
The present approach will facilitate the production of glycosurface
arrays of varying carbohydrate species type and density.
Acknowledgment. This work was supported by grants from
the NIH. We thank Dr. Jinho Hyun and Dr. A. Chilkoti at Duke
University for the kind gift of streptavidin precoated PET mem-
branes.
Figure 2. 1H NMR spectrum of biotin-terminated glycopolymer (8).
Supporting Information Available: Detail synthetic procedures
and spectral data for intermediates and final compounds, SDS-PAGE
gel shift assay, and glycosurface fabrication and lectin binding
procedures (PDF). This material is available free of charge via the
References
Figure 3. Streptavidin-biotin binding SDS-PAGE gel shift assay: (I) 2
equiv of glycopolymer; (II) 20 equiv of glycopolymer. A, marker; C,
Streptavidin alone; D, streptavidin + p-chlorophenyl-glycopolymer (10);
E, streptavidin + biotin-glycopolymer (8); F, streptavidin + biotin-cap-
glycopolymer (9).
(1) Bovin, N. V.; Gabius, H.-J. Chem. Soc. ReV. 1995, 413-421. Roy, R.
Trends Glycosci. Glycotechnol. 1996, 8, 79-99. Kiessling, L. L.;
Gestwicki, J. E.; Strong, L. E. Curr. Opin. Chem. Biol. 2000, 4, 696-
703. Bertozzi C. R.; Kiessling L. L. Science 2001, 291, 2357-2364.
(2) Roy, R.; Tropper, F. D.; Romanowska, A. J. Chem. Soc., Chem. Commun.
1992, 1611-1613. Thoma, G.; Patton, J. T.; Magnani, J. L.; Ernst, B.;
O¨ hrlein, R.; Duthaler, R. O. J. Am. Chem. Soc. 1999, 121, 5919-5929.
(3) Bundy, J. L.; Fenselau, C. Anal. Chem. 2001, 73, 751-757.
(4) Hanink, J. M.; Cornelissen, J. J. L. M.; Farrera, J. A.; Foubert, P.; De
Schryver, F. C.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Angew. Chem.,
Int. Ed. 2001, 40, 4732-4735.
(5) Cannizzaro, S. M.; Padera, R. F.; Langer, R.; Rogers, R.; Black, F. E.;
Davies, M. C.; Tendler, S.; Shakesheff, K. M. Biotechnol. Bioeng. 1998,
58, 529-535. Black, F. E.; Hartshorene, M.; Davies, M. C.; Roberts, C.
J.; Tender, S. J. B.; Williams P. M.; Shakesheff, K. M. Langmuir 1999,
15, 3157-3161.
(6) Hawker, C. J.; Hedrick, J. L. Macromolecules 1995, 28, 2993-2995.
Rodlert, M.; Harth, E.; Rees, I.; Hawker, C. J. J. Polym. Sci., Polym.
Chem. 2000, 38, 4749-4763. Harth, E.; Hawker, C. J.; Fan W.; Waymoth,
R. M. Macromolecules 2001, 34, 3856-3862
Figure 4. (A) Schematic of lectin binding to a glycopolymer-derivatized
surface; (B) fluorescent image of FITC-lectin bound onto a patterned PET
membrane.
(7) Kobayashi, A.; Kobayashi, K.; Akaike, T. Methods Enzymol. 1994, 247,
409-418. Pohl, N. L.; Kiessling, L. L. Synthesis 1999, 1515-1519. Tietze,
L. F.; Bothe, U.; Schuberth, I. Chem. Eur. J. 2000, 6, 836-842.
(8) Green, N. M. AdV. Protein Chem. 1975, 29, 85-133. Wilchek, M.; Bayer,
E. A. Methods Enzymol. 1990, 184, 5-13.
(9) Grande, D.; Baskaran, S.; Basakaran, C.; Gnanou, Y.; Chaikof, E. L.
Macromolecules 2000, 33, 1123-1125. Grande, D.; Baskaran, S.; Chaikof,
E. L. Macromolecules 2001, 34, 1640-1646.
(10) The biotin-containing arylamine initiators 1 and 2 were prepared by the
condensation of commercial available p-nitrobenzylamine with N-hydroxy-
succinimidyl-biotin, and N-hydroxy-succinimidyl-biotinamidocaproate fol-
lowed by hydrogenation with Pd-C in methanol in high yield, respec-
tively.
of biotin-glycopolymer (Gel I, Lanes E and F), but disappears in
the presence of an excess of glycopolymer (Gel II, Lanes E and
F). The retarded migration of streptavidin-glycopolymer complexes
may be due to both an increase in molecular weight and a reduction
in the capacity of the apolar portions of streptavidin to interact with
the alkyl moiety of sodium dodecysulfate (SDS).13 In this system,
the presence of a spacer arm did not have a measurable impact on
glycopolymer/streptavidin affinity.
Biotin and streptavidin activation techniques have played an
important role in the development of biofunctionalized surface for
sensor or biomaterial applications.14,15 Glycopolymer-coated sur-
faces were produced by incubating streptavidin-derivatized PET
membranes16 in a glycopolymer solution (1 mg/mL in PBS) for 1
h at room temperature. Membranes were subsequently washed with
PBS and incubated in a solution of a FITC-labeled galactose binding
lectin (1 mg of psophocarpus tetragonolobus/mL in PBS). As
demonstrated in Figure 4, lectin binding was observed in regions
of glycopolymer immobilization, while no such activity was noted
in surface regions not derivatized with streptavidin.
(11) 2-Acrylaminoethyl lactoside 7 was prepared from lactose per-acetate via
four steps including glycosylation, hydrogenation, and acrylation with
acryloyl chloride in 53% total yield.
(12) 4-Chlorophenyl-glycopolymer 10 was prepared in a similar procedure as
described for 8 by using 4-chloroaniline as initiator.
(13) Weber, K.; Osborn, M. J. Biol. Chem. 1969, 244, 4406-4412.
(14) Yang, Z.; Belu, A. M.; Liebman-Vinson, A.; Sugg, H.; Chilkoti, A.
Langmuir 2000, 16, 7482-7492.
(15) Hyun, J.; Zhu, Y.; Liebman-Vinson, A.; Beebe, T. P.; Chilkoti, A.
Langmuir 2001, 17, 6358-6367.
(16) Biotin-modified poly(etheneterephthate) (PET) surface was patterned with
streptavidin by microcontact print (40 µm streptavidin stripes with 40
µm spacing): ref 14.
JA025788V
9
J. AM. CHEM. SOC. VOL. 124, NO. 25, 2002 7259