3520
S. Sengupta, N. Pal / Tetrahedron Letters 43 (2002) 3517–3520
was devoid of much red-tailing, a phenomenon previ-
ously observed by us for a first generation m-distyryl-
benzene–anthracene dendrimer,6b suggesting that the
highly branched nature of the tetraphenylmethane
based dendrons in 5 probably discourages aggregate
formation. However, the energy transfer in 5 is less
than quantitative, perhaps due to the presence of only
six energy collection sites in the dendrimer periphery. A
higher generation dendrimer with more energy collect-
ing sites might provide improved efficiency. Moreover,
in an anthracene-cored dendrimer, the acceptor wave-
length (370–390 nm) where the energy is being trans-
ferred, has a low absorptivity which may also account
for the inefficient energy transduction in our system.
An acceptor chromophore having a strong absorbance
in the long wavelength region capped by numerous
stilbenoid energy collecting sites could provide a supe-
rior energy transfer module. We are currently investi-
gating these possibilities.
Y.-J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv.
Mater. 1996, 8, 237; (c) Mongin, O.; Gossauer, A. Tetra-
hedron 1997, 53, 6835; (d) Halim, M.; Pillow, J. N. G.;
Samuel, I. D. W.; Burn, P. L. Adv. Mater. 1999, 11, 371;
(e) Freeman, A. W.; Fre´chet, J. M. J.; Koene, S. C.;
Thompson, M. E. Polym. Prepr. 1999, 40, 1246; (f)
Spangler, C. W.; Elandaloussi, E. H.; Reeves, B. Polym.
Prepr. 2000, 41, 789; (g) Robinson, M. R.; Wang, S.;
Bazan, G. C. Adv. Mater. 2000, 12, 1701; (h) Yokoyama,
S.; Nakahama, T.; Ohtono, A.; Mashiko, S. J. Am.
Chem. Soc. 2000, 122, 3174; (i) Maus, M.; De, R.; Lor,
M.; Weil, T.; Mitra, S.; Wiesler, U. M.; Herrmann, A.;
Hofkens, J.; Vosch, T.; Mu¨llen, K.; De Schryver, F. C. J.
Am. Chem. Soc. 2001, 123, 7668; (j) Weil, T.; Wiesler, U.
M.; Herrmann, A.; Bauer, R.; Hofkens, J.; De Schryver,
F. C.; Mu¨llen, K. J. Am. Chem. Soc. 2001, 123, 8101; (k)
Meskers, S. C. J.; Bender, M.; Hu¨bner, J.; Romanovskii,
Y. V.; Oestereich, M.; Schenning, A. P. H. J.; Meijer, E.
W.; Ba¨ssler, H. J. Phys. Chem. A 2001, 105, 10220.
5. Spieser, S. Chem. Rev. 1996, 96, 1953.
6. (a) Pillow, J. N. G.; Halim, M.; Lupton, J. M.; Burn, P.
L.; Samuel, I. D. W. Macromolecules 1999, 32, 5985; (b)
Sengupta, S.; Sadhukhan, S. K.; Singh, R. S.; Pal, N.
Tetrahedron Lett. 2002, 43, 1117.
7. (a) Sengupta, S.; Sadhukhan, S. K. Tetrahedron Lett.
1999, 40, 9157; (b) Sengupta, S.; Sadhukhan, S. K.
Organometallics 2001, 20, 1889.
Acknowledgements
Professor Nitin Chattopadhya is thanked for access to
the
fluorescence
spectrometer
and
Pradipta
Purkayastha for some fluorescence experiments. One of
us (N.P.) thanks CSIR, New Delhi for a research
fellowship.
8. Jeffery, T. Tetrahedron 1996, 52, 10113.
1
9. 3: mp 220–224°C; H NMR (CDCl3, 300 MHz) l 1.33 (s,
27H), 2.34 (s, 9H), 4.67 (br s, 1H), 6.72 (d, 2H, J=8.5
Hz), 6.98 (d, 3H, J=16 Hz), 7.04–7.11 (m, 6H), 7.14 (d,
2H, J=8.3 Hz), 7.26 (d, 3H, J=16 Hz), 7.37 (d, 6H,
J=8.2 Hz), 7.45 (d, 6H, J=8.8 Hz), 7.48 (d, 3H, J=9.2
Hz). 5: mp>250°C; H NMR (CDCl3, 300 MHz) l 1.33
(s, 54H), 2.37 (s, 18H), 5.97 (s, 4H), 6.97–7.72 (m, 66H),
8.38 (m, 4H).
References
1. (a) McDermott, G.; Prince, S. M.; Freer, A. A.;
Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell,
R. J.; Isaacs, N. W. Nature 1995, 374, 517; (b) Hu, X.;
Damjanovic, A.; Ritz, T.; Schulten, K. Proc. Natl. Acad.
Sci. USA 1998, 95, 5935.
2. Reviews: (a) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle,
F. Dendritic Macromolecules: Concepts, Syntheses, Per-
spectives; VCH: Weinheim, 1996; (b) Chow, H. F.;
Mong, T. K. K.; Nongrum, M. F.; Wan, C. W. Tetra-
hedron 1998, 54, 8543; (c) Smith, D. K.; Diederich, F.
Chem. Eur. J. 1998, 4, 1353; (d) Fischer, M.; Vo¨gtle, F.
Angew. Chem., Int. Ed. Engl. 1999, 38, 884; (e) Grayson,
S. M.; Fre´chet J. M. J. Chem. Rev. 2001, 101, 3819.
3. Reviews: (a) Adronov, A.; Fre´chet, J. M. J. Chem. Com-
mun. 2000, 1701; (b) Hecht, S.; Fre´chet, J. M. J. Angew.
Chem., Int. Ed. Engl. 2001, 40, 74.
1
10. Cao, D.; Meier, H. Angew. Chem., Int. Ed. Engl. 2001,
40, 186.
11. Meier, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1399.
12. (a) Oldham, W. J., Jr.; Lachicotte, R. J.; Bazan, G. C. J.
Am. Chem. Soc. 1998, 120, 2987; (b) Wang, S.; Oldham,
W. J., Jr.; Hudack, R. A., Jr.; Bazan, G. C. J. Am. Chem.
Soc. 2000, 122, 5695.
13. The molar absorbtivity of tetraphenylmethane is 2020
compared to 212 for benzene. For constructive excitonic
couplings, see: (a) Kasha, M.; Rawls, H. R.; Ashraf
El-Bayoumi, M. Pure Appl. Chem. 1965, 11, 371; (b)
Langhals, H.; Wagner, C.; Ismael, R. New. J. Chem.
2001, 25, 1047.
4. See, for example: (a) Put, E. J. H.; Clays, K.; Persoons,
A.; Biemans, H. A. M.; Luijkx, C. P. M.; Meijer, E. W.
Chem. Phys. Lett. 1996, 260, 136; (b) Wang, P.-W.; Liu,
14. Prepared by phase transfer catalyzed alkylation reaction
of 4 with excess phenol.