δSi (C6D6) Ϫ147.8 (ring Si), 7.2 (iPr2MeSi); m/z 342 (33.2, Mϩ),
286 (100), 160 (35.6), 73 (22.1); HRMS found, 342.2590.
C18H42Si3 requires 342.2594.
C. Kabuto, J. Am. Chem. Soc., 1996, 118, 10303; (i) T. Iwamoto
and M. Kira, Chem. Lett., 1998, 277; (j) T. Iwamoto, C. Kabuto and
M. Kira, J. Am. Chem. Soc., 1999, 121, 886
. Correction:
T. Iwamoto, C. Kabuto and M. Kira, J. Am. Chem. Soc., 200, 122,
12614; (k) T. Iwamoto, M. Tamura, C. Kabuto and M. Kira,
Science, 2000, 290, 504–506.
Photolysis of cyclotrisilane 1b in (Z )-2-butene. Following the
same procedure used for the photolysis of 1a in 2-butenes,
photolysis of 1b (10.0 mg, 1.16 × 10Ϫ5 mol) was carried out in
(Z)-2-butene. The NMR spectra of the reaction mixture
showed that the photolysis conversion was 81% and the mixture
6 For reviews on small ring compounds containing heavier Group 14
elements, see: (a) M. Weidenbruch, Comments Inorg. Chem., 1986, 5,
247; (b) T. Tsumuraya, S. A. Batcheller and S. Masamune, Angew.
Chem., Int. Ed. Engl., 1991, 30, 902; (c) M. Weidenbruch, Chem.
Rev., 1995, 95, 1479; (d ) E. Hengge and R. Janoschek, Chem. Rev.,
1995, 95, 1495; (e) M. Driess and H. Grützmacher, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 828; ( f ) A. Sekiguchi and S. Nagase, in The
Chemistry Organic Silicon Compounds, vol. 2, ed. Z. Rappoport and
Y. Apeloig, John Wiley & Sons Ltd., New York, 1998, part 1, ch. 3,
pp. 119–152; (g) M. Weidenbruch, Eur. J. Inorg. Chem., 1999, 373.
included
(Z)-1,1-bis(diisopropylmethylsilyl)-2,3-dimethyl-
silirane (Z)-6b (1.9 mg, 5.6 × 10Ϫ6 mol, 60%), a trace amount
of disilene 5b (<1%), and its hydrate 7b (3.1 mg, 5.2 × 10Ϫ6 mol,
55%). (Z)-6b: δH (C6D6) Ϫ0.03 (3 H, s, SiCH3), 0.10 (3 H, s,
SiCH3), 0.90–1.01 (4 H, m, 4 CHMe2), 1.05–1.13 (24 H, m,
4 CHMe2), 1.33–1.40 (2 H, m, 2 CHMe), 1.43–1.45 (6 H, m,
2 CHMe); δC (C6D6) Ϫ8.2, Ϫ6.1 (SiMe), 12.4, 13.2 (SiCHMe2),
17.0 (ring Me), 18.5 (ring C), 18.8, 19.8 (SiCHMe2); δSi (C6D6)
Ϫ158.1 (ring Si), 4.7, 9.4 (iPr2MeSi); m/z 342 (30.6, Mϩ), 286
(100), 160 (40.1), 73 (31.3); HRMS found, 342.2621. C18H42Si3
requires 342.2594.
7 Structurally similar 2,2-diphenyltrisilanes Ph2Si(SiR3)2 (R3Si
=
EtMe2Si, Et2MeSi, and Et3Si) were prepared by reaction of Ph2SiCl2
with the corresponding trialkylchlorosilane with magnesium in the
presence of HMPA as reducing agent.8a Under similar reaction
conditions, neither 4a nor 4b have been obtained.
8 (a) H. Matsumoto, N. Yokoyama, A. Sakamoto, Y. Aramaki,
R. Endo and Y. Nagai, Chem. Lett., 1986, 1643; (b) H. Matsumoto,
A. Sakamoto and Y. Nagai, J. Chem. Soc., Chem. Commun., 1986,
1768.
9 Interestingly, the major product of the reductive debromination
of 3a and 3b depends on the reaction conditions. The reactions of
2,2-dibromotrisilanes 3a and 3b with sodium dispersion at room
temperature in toluene gave the corresponding tetrakis(trialkyl-
silyl)disilenes 5a and 5b in high yield.5a.
Acknowledgements
This work was supported by the Ministry of Education, Cul-
ture, Sports, Science, and Technology of Japan (Grants-in-Aid
for Scientific Research (B) No. 11440185 (M. K. and T. I.) and
Encouragement of Young Scientists No. 12740336 (T. I.)).
10 K. W. Klinkhammer, in Organosilicon Chemistry III, ed. N. Auner
and J. Weis, Wiley-VCH, Weinheim, 1997, pp. 82–85.
11 (a) H. Watanabe, T. Okawa, M. Kato and Y. Nagai, J. Chem. Soc.,
Chem. Commun., 1983, 781; (b) S. Masamune, H. Tobita and
S. Murakami, J. Am. Chem. Soc., 1983, 105, 6524; (c) A. Schäfer,
M. Weidenbruch, K. Peters and H.-G. von Schnering, Angew.
Chem., Int. Ed. Engl., 1984, 23, 302.
12 The CIS (configuration interaction, single) calculations [CIS/6-
31G(d,p)//B3LYP/6-31G(d)] for hexakis(trihydrosilyl)cyclotrisilane
References and notes
1 For reviews on silylenes, see: P. P. Gaspar and R. West, in The
Chemistry of Organic Silicon Compounds, vol. 2, ed. Z. Rappoport
and Y. Apeloig, Wiley & Sons Ltd., New York, 1998, part 3, ch. 32,
pp. 2463–2569; Y. Apeloig, in The Chemistry of Organic Silicon
Compounds, ed. S. Patai and Z. Rappoport, Wiley, Chichester, 1989,
part 1, ch. 2, pp. 167–184; M. Haaf, T. M. Schmedake and R. West,
Acc. Chem. Res., 2000, 33, 704.
2 For theorerical calculations on triplet silylenes, see: (a) R. S. Grev,
H. F. Schaefer III and P. P. Gaspar, J. Am. Chem. Soc., 1991, 113,
5638; (b) M. C. Holthausen, W. Kock and Y. Apeloig, J. Am. Chem.
Soc., 1999, 121, 2623 and references cited therein.
3 For attempted generation of triplet silylenes, see: (a) Y.-S. Chen and
P. P. Gaspar, Organometallics, 1982, 1, 1416; (b) Y. Apeloig,
D. Bravo-Zhivotovski, I. Zharov, V. Panov and G. W. Sluggett,
J. Am. Chem. Soc., 1998, 120, 1398; (c) P. P. Gaspar, A. M. Beatty,
T. Chen, T. Haile, D. Lei, W. R. Winchester, J. Braddock-Wilking,
N. P. Rath, W. T. Klooster, T. F. Koetzle, S. A. Mason and
A. Albinati, Organometallics, 1999, 18, 3921; (d ) P. Boudjouk,
U. Samaraweera, R. Sooriyakumaran, J. Chrusciel and K. R.
Anderson, Angew. Chem., Int. Ed. Engl., 1988, 27, 1355; (e) D. H.
Pae, M. Xiao, M. Y. Chiang and P. P. Gaspar, J. Am. Chem. Soc.,
1991, 113, 1281; ( f ) W. Ando, M. Fujita, H. Yoshida and
A. Sekiguchi, J. Am. Chem. Soc., 1988, 110, 3310; (g) S. Zhang, P. E.
Wagenseller and R. T. Conlin, J. Am. Chem. Soc., 1991, 113, 4278 .
After the submission of this paper, Gaspar et al. have reported
the intramolecular hydrogen abstraction of (tBu3Si)(iPr3Si)Si:
and (tBu3Si)2Si: as evidence for the triplet nature of these silylenes;
(h) P. Jiang and P. P. Gaspar, J. Am. Chem. Soc., 2001, 123, 8622 .
See also; (i) N. Wiberg, Coord. Chem. Rev., 1997, 163, 217; (j)
N. Wiberg and W. Niedermayer, J. Organomet. Chem., 2001, 628,
57.
4 M. Kira, T. Maruyama and H. Sakurai, Chem. Lett., 1993, 1345. See
also: M. Kira, T. Maruyama, H. Sakurai, presented at the XXV
Silicon Symposium, Los Angeles, April 1992, abstract no. 72P; K. E.
Banks, Y. Wang and R. T. Conlin, presented at the XXV Silicon
Symposium, Los Angeles, April 1992, abstract no. 7.
5 (a) M. Kira, T. Maruyama, K. Ebata, C. Kabuto and H. Sakurai,
Angew. Chem., Int. Ed. Engl., 1994, 33, 1489; (b) R. West, J. D.
Cavalieri, J. J. Buffy, C. Fry, K. W. Zilm, J. C. Duchamp, M. Kira,
T. Iwamoto, T. Müller and Y. Apeloig, J. Am. Chem. Soc., 1997, 119,
4972; (c) M. Kira, T. Iwamoto and H. Sakurai, Bull. Chem. Soc.
Jpn., 1998, 71, 274; (d ) M. Kira, S. Ohya, T. Iwamoto, M. Ichinohe
and C. Kabuto, Organometallics, 2000, 19, 1817; (e) M. Kira and
T. Iwamoto, J. Organomet. Chem., 2000, 611, 236; ( f ) M. Kira,
T. Ishima, T. Iwamoto and M. Ichinohe, J. Am. Chem. Soc., 2001,
123, 1676; (g) M. Kira, T. Iwamoto, D. Yin, T. Maruyama and
H. Sakurai, Chem. Lett., 2001, 910; (h) M. Kira, T. Iwamoto and
(D3) showed that the two σ
σ* transition bands appear at 205.5
and 193.2 nm with very different oscillator strengths of 0.0166 and
0.5886, respectively, where the σ and σ* orbitals are symmetric
about the reflection in the cyclotrisilane ring plane. It is possible
however that several exocyclic orbitals (π and π*) which are
antisymmetric about the reflection may participate to the electronic
transitions, while they are symmetry forbidden for D3 cyclotrisilane.
The CIS calculations showed the longest absorption band at 230.0
nm (5.391 eV) with zero oscillator strength (σ
π* transition).
13 Matsumoto, Nagai and their coworkers have mentioned the steric
effects of the silyl substituents on the UV-vis spectra of
cyclotetrasilanes.6c,8a
.
14 For solid-state NMR of cyclotrisilanes, see: J. D. Cavalieri, R. West,
J. C. Duchamp and K. W. Zilm, J. Am. Chem. Soc., 1993, 115, 3770;
R. West, J. D. Cavalieri, J. Duchamp and K. W. Zilm, Phosphorus,
Sulfur, Silicon Relat. Elem., 1994, 93–94, 213.
15 Theoretical calculations have shown that the endocyclic silicon
nuclei in cyclotrisilanes are deshielded on increasing the substituent–
Si(ring)–substituent angles: J. A. Tossell, D. C. Winkler and J. H.
Moore, Chem. Phys., 1994, 185, 297; G. Magyarfalvi and P. Pulay,
Chem. Phys. Lett., 1995, 241, 393.
16 M. Ishikawa, K.-I. Nakagawa and M. Kumada, J. Organomet.
Chem., 1979, 178, 105; V. J. Tortorelli and M. Jones, Jr., J. Am.
Chem. Soc., 1980, 102, 1425; D. Seyferth, D. C. Annarelli and
D. P. Duncan, Organometallics, 1982, 1, 1288; V. J. Tortorelli,
M. Jones, Jr., S.-H. Wu and Z.-H. Li, Organometallics, 1983, 2, 759.
17 Stereochemistry of the resulting siliranes was determined by
comparing the proton chemical shifts with those for the siliranes
reported by Conlin et al.: S. Zhang and R. T. Conlin, J. Am. Chem.
Soc., 1991, 113, 4272.
18 The yields of the siliranes 6a and 6b tetrasilyldilenes 5a and 5b and
their hydrates 7a and 7b were determined by assuming that
photolysis of a cyclotrisilane gives the corresponding silylene and
disilene with a ratio of 1 : 1. No reaction was observed during the
irradiation of tetrakis(trialkylsilyl)disilenes 5a and 5b in 2-butenes,
indicating that the disilenes did not undergo further dissociation to
the corresponding silylenes under the photochemical conditions.
19 P. P. Gaspar and G. S. Hammond, in Carbene Chemistry, 1st edn.,
ed. W. Kirmse, Academic Press, New York, 1964, ch. 12, pp. 235–274.
20 M. Weidenbruch, G. Schiffer, G. Haegele and W. Peters,
J. Organomet. Chem., 1975, 90, 145.
21 M. N. Burnett and C. K. Johnson, ORTEP3, Report ORNL-6895,
Oak Ridge National Laboratory, Oak Ridge, TN, 1996.
1544
J. Chem. Soc., Dalton Trans., 2002, 1539–1544