4462
M. J. Fisher et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4459–4462
Cashen, D. E.; Drisko, J. E.; Hom, G. J.; Howard, A.
D.; MacIntyre, D. E.; van der Ploeg, L. H. T.; Patchett, A.
A.; Nargund, R. P. J. Med. Chem. 2002, 45, 4589; (c)
Dyck, B.; Parfker, J.; Phillips, T.; Carter, L.; Murphy, B.;
Summers, R.; Hermann, J.; Baker, T.; Cismowski, M.;
Saunders, J.; Goodfellow, V. Biorg. Med. Chem. Lett.
2003, 13, 3793; (d) Jhang, J.; Xiong, C.; Ying, J.; Wamg,
W.; Hrubt, V. J. Org. Lett. 2003, 5, 3115; (e) Fotsch, C.;
Smith, D. M.; Adams, J. A.; Cheetham, J.; Croghan, M.;
Dorhety, E. M.; Hale, C.; Jarosinski, M. A.; Kelly, M. G.;
Norman, M. H.; Tamayo, N. A.; Xi, N.; Baumgartner, J.
W. Biorg. Med. Chem. Lett. 2003, 13, 2337.
prepared, we noticed sensitivity in regard to placement
and type of the polar group. Locating the polar group
adjacent to the aromatic ring apparently afforded too
much conformational restraint, resulting in lower affinity,
relative to its acyclic congener. This activity was
somewhat restored by moving the polar group one atom
over to the benzylic position. Further movement within
the ring proved to be less optimal. Movement of the polar
group from an endocyclic to an exocyclic position
presumably provided additional conformational flexibil-
ity, which leads to an increase in activity. Interestingly, in
the one example shown, enantiomeric configuration
had little impact on overall activity. Consistent with
earlier findings, activity was higher with alkyl amine
substitution.5
5. Richardson, T. I.; Ornstein, P. L.; Briner, K.; Fisher, M.
J.; Backer, R. T.; Biggers, C. K.; Clay, M. P.; Emmerson,
P. J.; Hertel, L. W.; Hsiung, H. M.; Husain, S.; Kahl, S.
D.; Lee, J. A.; Lindstrom, T. D.; Martinelli, M. J.; Mayer,
J. P.; Mullaney, J. T.; OÕBrien, T. P.; Pawlak, J. M.;
Revell, K. D.; Shah, J.; Zgombick, J. M. J. Med. Chem.
2004, 47, 744.
6. Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber,
D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.;
Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.;
Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235.
7. For examples of this phenomenon, compare the ligands
for growth hormone secretagogues outlined in the follow-
ing papers: (a) Patchett, A. A.; Nargund, R. P.; Tata, J.
R.; Chen, M.-H.; Barakat, K. J.; Johnston, D. B. R.;
Cheng, K.; Chan, W. W.-S.; Butler, B. Proc. Natl. Acad.
Sci. U.S.A. 1995, 79, 7001; (b) Seyler, D. E.; Dodge, J. A.;
Osborne, J. J.; Cox, K. L.; Viswanath, D.; Wilmot, A. F.;
Keaton, M. J.; Heiman, M. L.; Bryant, H. U. Drug Dev.
Res. 2000, 49, 260; (c) MacAndrew, J. T.; Ellery, S. S.;
Parry, M. A.; Pan, L. C.; Black, S. C. Eur. J. Pharmacol.
2001, 432, 195.
Finally, compound 22o illustrates an important finding
of this paper. A comparison of compounds 22b and
22c with compound 22o illustrates the fact that mere
incorporation of a polar group into a privileged struc-
ture motif does not always lead to expected or enhanced
activity. Rather, the data suggest that placement and
orientation of this functionality are important aspect
to consider during the exploration and optimization of
an initial privileged structure containing hits. Once the
general location of the polar group has been identified,
there is usually some latitude with regard to functional
group identity and orientation that should allow further
refinement of either potency or overall properties of the
molecule.
Acknowledgment
8. Bondensgaard, K.; Ankersen, M.; Thogersen, H.; Hansen,
B. S.; Wulff, B. S.; Bywater, R. P. J. Med. Chem. 2004, 47,
488.
9. Brown, W. D.; Gouliaev, A-H. Synthesis 2002, 83.
10. Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144.
11. Romero, A. G.; Leiby, J. A.; McCall, R. B.; Piercey, M.
F.; Smith, M. W.; Han, F. J. Med. Chem. 1993, 36, 2066.
12. Speicher, A.; Klaus, T.; Eicher, T. J. Prakt. Chem./Chem-
Ztg 1998, 340, 581.
The authors thank Mark Heiman for many helpful
discussions.
References and notes
1. Strand, F. L. Ann. N.Y. Acad. Sci. 1999, 897, 1.
2. Smith, P. E. Science 1916, 44, 280.
3. Cone, R. D.; Mounthoy, K. G.; Robbins, L. S.; Nadu, J.
H.; Johnson, K. R.; Roselli-Rehfuss, L.; Mortund, M. T.
Ann. N.Y. Acad. Sci. 1993, 680, 342.
4. For examples of efforts directed at the preparation of
selective ligands see: (a) Pan, K.; Scott, M. K.; Lee, D. H.
S.; Fitzpatrick, L. J.; Crooke, J. J.; Rivero, R. A.;
Rosenthal, D. I.; Vaidya, A. H.; Zhao, B.; Reita, A. B.
Biorg. Med. Chem. Lett. 2003, 11, 185; (b) Sebhat, I. K.;
Martin, W. J.; Ye, S.; Marakat, K.; Mosley, R. T.;
Johnston, D. B. R.; Bakshi, R.; Palucki, B.; Weinberg, D.
H.; MacNeil, T.; Kalyani, R. N.; Tang, R.; Sterns, R. A.;
Tamvakopoulos, C.; Strack, A. M.; McGowan, E.;
13. The details of the binding assay have been recently
described. See Ref. 5.
14. Functional activity was determined by measuring the
cAMP release with a standard luciferase assay employing
HEK 293 cells stably transfected with hMC4 (data not
shown). Compounds of this paper were agonists with
relative efficacies 60–100% of the maximum response
obtained with NDP-a-MSH.
15. Each data point represents the average of at least two
determinations with an average error of the binding assay
being 15%.
16. Boninell, W.E.; Neeb, M.J. WO 02/05819, 2002; Chem.
Abstr. 2002, 136, 134783.