ORGANIC
LETTERS
2002
Vol. 4, No. 14
2305-2308
Fluorescent
1,10-Phenanthroline-Containing
Oligonucleotides Distinguish between
Perfect and Mismatched Base Pairing
Dennis J. Hurley, Susan E. Seaman, Jan C. Mazura, and Yitzhak Tor*
Department of Chemistry and Biochemistry, UniVersity of California, San Diego,
La Jolla, California 92093-0358
Received April 18, 2002
ABSTRACT
A fluorescent deoxyuridine analogue is sensitive to the polarity of its environment and exhibits a distinct emission profile in single- vs
phen
double-stranded oligonucleotides. Emission-monitored denaturation curves of internally modified dU
base opposite dUphen and distinguish between perfect and mismatched complementary oligonucleotides.
duplexes are characteristic of the
Fluorescent nucleosides that are sensitive to the local
environment within DNA duplexes have been attracting
attention as probes for DNA hybridization and DNA-ligand
interactions.1 Various approaches have been explored, in-
cluding the following: (a) isomorphic base analogues such
as 2-aminopurine2 and 5-methylpyrimidin-2-one,3 (b) ex-
tended bases such as 1,N6-ethenoadenine4 and benzo[g]-
quinazoline-2,4-(1H,3H)-dione,5 (c) base conjugates such as
pyrene-linked pyrimidines6 or ethynyl extended deazapu-
rines,7 and (d) nucleoside analogues with fluorophores
replacing the natural heterocycles.8 Such modifications are
particularly valuable since the natural bases are practically
nonemissive9 and end labeling with fluorescent tags is not
necessarily sensitive to remote binding events. No universal
(1) For review articles, see: Wojczewski, C.; Stolze, K.; Engels, J. W.
Synlett 1999, 1667-1678. Hawkins, M. E. Cell Biochem. Biophys. 2001,
34, 257-281.
(5) Godde, F.; Toulme´, J.-J.; Moreau, S. Biochemistry 1998, 37, 13765-
13775. Arzumanov, A.; Godde, F.; Moreau, S.; Toulme´, J.-J.; Weeds, A.;
Gait, M. J. HelV. Chim. Acta 2000, 83, 1424-1436.
(6) Netzel, T. L.; Zhao, M.; Nafisik, K.; Headrick, J.; Sigman, M. S.;
Eaton, B. E. J. Am. Chem. Soc. 1995, 117, 9119-9128. Manoharan, M.;
Tivel, K. L.; Zhao, M.; Nafisil, K.; Netzel, T. L. J. Phys. Chem. 1995, 99,
17461-16472. Kerr, C. E.; Mitchell, C. D.; Headrick, J.; Eaton, B. E.;
Netzel, T. L. J. Phys. Chem. B 2000, 104, 1637-1650.
(2) For selected examples, see: Ward, D. C.; Reich, E.; Stryer, L. J.
Biol. Chem. 1969, 244, 1228-1237. Menger, M.; Tuschl, T.; Eckstein, F.;
Porschke, D. Biochemistry 1996, 35, 14710-14716. Lacourciere, K. A.;
Stivers, J. T.; Marino, J. P. Biochemistry 2000, 39, 5630-5641. Kawai,
M.; Lee, M. J.; Evans, K. O.; Nordlund, T. M. J. Fluoresc. 2001, 11, 23-
32. Jean, J. M.; Hall, K. B. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 37-41.
Rachofsky, E. L.; Osman, R.; Ross, J. B. A. Biochemistry 2001, 40, 946-
956. Kirk, S. R.; Luedtke, N. W.; Tor, Y. Bioorg. Med. Chem. 2001, 9,
2295-2301.
(7) Seela, F.; Zulauf, M.; Sauer, M.; Deimel, M. HelV. Chim. Acta 2000,
83, 910-927. Seela, F.; Feiling, E.; Gross, J.; Hillenkamp, F.; Ramzaeva,
N.; Rosemeyer, H.; Zulauf, M. J. Biotech. 2001, 86, 269-279.
(8) Paris, P. L.; Langenhan, J. M.; Kool, E. T. Nucleic Acids Res. 1998,
26, 3789-3793. Stra¨ssler, C.; Davis, N. E.; Kool, E. T. HelV. Chim. Acta
1999, 82, 2160-2171. Singh, I.; Hecker, W.; Prasad, A. K.; Parmar, V. S.;
Seitz, O. Chem. Commun. 2002, 500-501.
(3) Singleton, S. F.; Shan, F.; Kanan, M. W.; McIntosh, C. M.; Stearman,
C. J.; Helm, J. S.; Webb, K. J. Org. Lett. 2001, 3, 3919-3922.
(4) Secrist, J. A., III; Barrio, J. R.; Leonard, N. J. Science 1972, 175,
646-647. Holme´n, A.; Albinsson, Norde´n, B, J. Phys. Chem. 1994, 98,
13460-13469 and references therein.
(9) Daniels, M.; Hauswirth, W. Science 1971, 171, 675-677. Pecourt,
J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348-9349.
10.1021/ol026043x CCC: $22.00 © 2002 American Chemical Society
Published on Web 06/08/2002