g = 90.83(3)°, U = 2104.1(7) Å3, Z = 4, Dc = 1.528 Mg m23, M =
483.91, T = 150(2) K. 29336 reflections collected, 7309 independent
[R(int) = 0.0953] which were used in all calculations. R1 = 0.0932, wR2
=
0.2638 for observed unique reflections [F2 > 2s(F2)] and R1 = 0.1110,
wR2 = 0.2712 for all unique reflections. Max. and min. residual electron
densities: 2.578 (near Fe3) and 20.997 e Å23, respectively. The poor
quality of the data is due to the fact that the crystal was found to be a
multiple. It was not possible to deconvolute the diffraction patterns of each
component. This problem was found to be inherent in several crystals
selected. The asymmetric unit contains two crystallographically independ-
ent molecules. All attempts to refine the structure in higher symmetry space
groups failed. Despite the poor quality of the data the gross molecular
framework of the molecule is unambiguous and fully supported by the
spectroscopic data.
For C17H18BBrFeO2 2A: monoclinic, P21/c, a = 8.315(2), b = 15.283(3),
c = 14.113(3), b = 104.89(3)°, U = 1733.2(6) Å3, Z = 4, Dc = 1.536 Mg
m23, M = 400.88, T = 150(2) K. 31913 reflections collected, 3963
5
Fig. 2 Molecular structure of (h -C5H4Me)Fe(CO)2B(2,4,6-Me3C6H2)Br,
independent [R(int) = 0.0588] which were used in all calculations. R1
=
0.0448, wR2 = 0.0923 for observed unique reflections [F2 > 2s(F2)] and
R1 = 0.0555, wR2 = 0.0974 for all unique reflections. Max. and min.
residual electron densities: 1.941 (near Br1) and 21.813 e Å23, re-
spectively.
2A. Relevant bond lengths (Å) and angles (°): Fe(1)–B(1) 1.962(4), B(1)–
Br(1) 2.005(3), B(1)–C(3) 1.571(4), Fe(1)–Cp 1.735(4); C(3)–B(1)–Fe(1)–
Cp 3.8(2).
C5H4Me)Fe(CO)]2(m2-CO)[m2-BN(SiMe3)2]11}and (ii) in the
asymmetric boryl precursor 2A [1.962(4) Å] (Fig. 2).∑ This
lengthening of the Fe–B distance, together with carbonyl
stretching frequencies (2010 and 1949 cm21) which differ little
suppdata/cc/b2/b201415g/ for crystallographic data in CIF or other
electronic format.
5
∑ 2A [containing the (h -C5H4Me) ligand] gave easier access to single
crystals; spectroscopic data for 2A are included in the ESI.†
5
from those reported for (h -C5H5)Fe(CO)2CH3 (2010 and 1958
cm21 15) implies that there is little or no p stabilization of the
boron centre through Fe–B back bonding. Additionally, there is
little or no p interaction between the boron centre in 3 and the
mesityl ring system, with the angle between the Fe2B and
BCipsoCortho planes being of the order of 83.6(4)°. Clearly the
orientation of the plane of the mesityl ligand is largely
determined by efforts to minimize steric interaction with the
1 W. A. Herrmann, Adv. Organomet. Chem., 1982, 20, 159; W. A. Nugent
and J. M. Mayer, Metal Ligand Multiple Bonds, Wiley Interscience,
New York, 1988.
2 See, for exampleB. V. Mork and T. D. Tilley, J. Am. Chem. Soc., 2001,
123, 9702.
3 G. J. Irvine, M. J. G. Lesley, T. B. Marder, N. C. Norman, C. R. Rice,
E. G. Robins, W. R. Roper, G. Whittell and L. J. Wright, Chem. Rev.,
1998, 98, 2685; H. Braunschweig and M. Colling, Coord. Chem. Rev.,
2001, 223, 1.
4 See, for example: J. Weiss, D. Stetzkamp, B. Nuber, R. A. Fischer, C.
Boehme and G. Frenking, Angew. Chem., Int. Ed. Engl., 1997, 36, 70;
S. T. Haubrich and P. P. Power, J. Am. Chem. Soc., 1998, 120, 2002; P.
Jutzi, B. Neumann, G. Reumann, L. O. Schebaum and H.-G. Stammler,
Organometallics, 1999, 18, 2550.
5 J. Su, X.-W. Li, R. C. Crittendon, C. F. Campane and G. H. Robinson,
Organometallics, 1997, 16, 4511; F. A. Cotton and X. Feng,
Organometallics, 1998, 17, 128.
6 X. He, R. A. Bartlett and P. P. Power, Organometallics, 1994, 13, 548;
T. Yamaguchi, K. Ueno and H. Ogino, ibid, 2001, 20, 501; A. H.
Cowley, A. Decken, C. A. Olazabal and N. C. Norman, Z. Anorg. Allg.
Chem., 1995, 621, 1844.
5
(h -C5H5)Fe(CO)2 moieties.
Recent theoretical studies have indicated that borylene
ligands bind strongly to transition metal centres, but that such
complexes are likely to be kinetically labile due to the build up
of positive charge at boron.16 The synthesis of 3 indicates that
in the presence of suitable steric shielding it is possible to isolate
complexes containing highly Lewis acidic boron centres and
novel modes of coordination of the borylene ligand.
We would like to thank the EPSRC, the Royal Society and the
Nuffield Foundation for funding.
Notes and references
† Electronic supplementary information (ESI) available: spectroscopic data
suppdata/cc/b2/b201415g/
7 C. L. B Macdonald and A. H. Cowley, J. Am. Chem. Soc., 1999, 121,
12113; G. Frenking and N. Fröhlich, Chem. Rev., 2000, 100, 717.
8 Several examples of boron-containing clusters featuring facing capping
BR units which may alternatively be described as triply bridging (m3)
borylenes are known, e.g., R. Okamura, K. Tada, K. Matsubara, M.
Oshima and H. Suzuki, Organometallics, 2001, 20, 4772.
9 A. H. Cowley, V. Lomeli and A. Voight, J. Am. Chem. Soc., 1998, 120;
G. J. Irvine, C. E. F. Rickard, W. R. Roper, A. Williamson and L. J.
Wright, Angew. Chem., Int. Ed., 2000, 39, 948.
10 H. Braunschweig, C. Kollann and U. Englert, Angew. Chem. Int. Ed.
Engl., 1998, 37, 3179; H. Braunschweig, M. Colling, C. Kollann, H. G.
Stammler and B. Neumann, ibid, 2001, 40, 2298; H. Braunschweig, M.
Colling, C. Kollann, K. Merz and K. Radacki, ibid, 2001, 40, 4198.
11 H. Braunschweig and T. Wagner, Angew. Chem. Int. Ed. Engl., 1995,
34, 825; H. Braunschweig and M. Müller, Chem. Ber., 1997, 130, 1295;
H. Braunschweig, C. Kollann and U. Englert, Eur. J, Inorg. Chem.,
1998, 465.
5
‡ Reaction of a toluene solution of (2,4,6-Me3C6H2)BBr2 (1) (0.312 g, 1.08
5
mmol) with 1 equiv. of (h -C5H5)Fe(CO)2Na at 20 °C over 12 h, followed
by filtration, removal of volatiles in vacuo and recrystallization from
hexanes (ca. 20 cm3) leads to the isolation of 2 as a pale yellow crystalline
5
solid in yields of up to 60%. Use of a five-fold excess of (h -
C5H5)Fe(CO)2Na over 96 h at 40 °C, subsequent filtration, removal of
volatiles in vacuo and recrystallization from hexanes leads to the isolation
of 3 in yields of up to 35%.
§ Spectroscopic data for 2 and 3. 2: MS(EI): M+ = 386 (weak), isotopic
pattern corresponding to 1 B, 1 Fe, 1 Br atoms, strong fragment ion peaks at
m/z 358 [(M 2 CO)+, 25%] and 330 [(M 2 2CO)+, 100%]. 1H NMR
([2H6]benzene, 21 °C), d 2.17 [s, 6H, ortho-CH3], 2.20 [s, 3H, para-CH3],
5
4.00 [s, 5H, h -C5H5], 6.69 [s, 2H, aromatic CH]. 13C NMR ([2H6]benzene,
5
21 °C), d 20.9 [para-CH3], 21.2 [ortho-CH3], 86.8 [h -C5H5], 128.0
[aromatic CH], 131.1, 136.6 [aromatic quaternary], 213.8 [CO]. 11B NMR
([2H6]benzene, 21 °C), d 111.4. IR (KBr disk, cm21) n(CO) 2016s, 1962s.
3: MS(EI): M+ = 484 (weak), fragment ion peaks at m/z 456 [(M 2 CO)+,
20%], 428 [(M 2 2CO)+, weak], 400 [(M 2 3CO)+, 30%], 372 [(M 2
4CO)+, 35%]. 1H NMR ([2H6]benzene, 21 °C), d 2.08 [s, 6H, ortho-CH3],
12 M. Shimoi, S. Ikubo and Y. Kawano, J. Am. Chem. Soc., 1998, 120,
4222.
13 S. Aldridge, R. J. Calder, A. A. Dickinson, D. J. Willock and J. W.
Steed, Chem. Commun, 2000, 1377; S. Aldridge, A. Al-Fawaz, R. J.
Calder, A. A. Dickinson, D. J. Willock, M. Light and M. B. Hursthouse,
Chem. Commun., 2001, 1846; A. A. Dickinson, D. J. Willock, R. J.
Calder and S. Aldridge, Organometallics, 2002, 21, 1146.
14 A precedent of sorts for this mode of coordination of the borylene ligand
is found in the unstable boron sub-fluoride B3F5 [(F2B)BF(BF2)]:P. L.
Timms, Acc. Chem. Res., 1973, 6, 118.
15 K. Pannell, C. C. Wu and G. J. Long, J. Organomet., Chem., 1980, 193,
359.
16 A. W. Ehlers, E. J. Baerends, F. M. Bickelhaupt and U. Radius, Chem.
Eur. J., 1998, 4, 210.
5
2.27 [s, 3H, para-CH3], 4.03 [s, 10H, h -C5H5], 6.74 [s, 2H, aromatic CH].
13C NMR ([2H6]benzene, 21 °C), d 20.8 [para-CH3], 23.0 [ortho-CH3],
5
86.6 [h -C5H5], 128.1 [aromatic CH], 126.0, 128.5, 134.0 [aromatic
quaternary], 217.3 [CO]. 11B NMR ([2H6]benzene, 21 °C), d 158.0. IR (KBr
disk, cm21) n(CO) 2010s, 1997m sh, 1949s, 1931w sh. Satisfactory
elemental analyses for 2 and 3 were frustrated by the extremely ready
decomposition of the two compounds.
¯
¶
Crystallographic data: for C23H21BFe2O4 3: triclinic, P1, a
=
11.938(2), b = 12.404(3), c = 15.431(3) Å, a = 111.56(3), b = 97.15(3),
CHEM. COMMUN., 2002, 856–857
857