C O M M U N I C A T I O N S
downfield shift, consistent with Pd(II) complexation. Fluxional behavior
was also confirmed via 13C NMR (see SI, p S14). 1H NMR
spectroscopy also shows a significant broadening of the CH2-arm
moiety resonances, attributed to the syn and anti isomers of 5. A
with little π-back bonding, whereas some Pd-C analogues1 have
significant multiple bond character with both σ-electron donation and
π-back bonding. Taking into consideration that the electronegativity
of palladium is higher than that of boron,13 the possibility of Pd bearing
a formal oxidation state of zero in 5 and 7 cannot be dismissed at this
point.
1
temperature dependent H NMR study enabled us to estimate the
activation energy for this process to be ∼64 kJ/mol (see SI, p S13),
based upon coalescence temperature and literature methods.11
Finally, the solid-state molecular structure of 5 was determined by
single crystal X-ray diffraction methods. The Pd(II) center exhibits a
distorted square planar coordination geometry, with two selenoether
ligands coordinated in a trans fashion (Figure 1b) and a chloride atom
ligated to Pd(II) in a trans fashion to B(2). The Pd-Cl bond length
(2.44 Å) in 5 is slightly longer than similar motifs in aryl-based pincers
(see SI, p S21, ref S5), indicating a stronger trans influence of the
2-boryl moiety on the m-carborane cage than its phenyl analogue. The
Pd-B distance is one of the shortest (1.98 Å) reported to date (see SI,
p S21, ref S4), based on a search performed in the Cambridge
Crystallographic Data Center. To our knowledge, this structure
represents the first crystallographically characterized Pd-B σ bond in
carborane systems and the first metal-boron(2) bond in m-carborane
chemistry.
Work toward probing the stoichiometric and catalytic chemistry14
of these complexes is currently underway. In particular, we are
interested in exploring the nature of the M-B bond in carboranes,
which was recently suggested to be more thermodynamically stable
than the M-C analogue.15 In addition, this is a novel type of hemilabile
ligand which can be used for preparing a wide variety of supramo-
lecular architectures, a primary focus of our current research.16
Acknowledgment. We thank Dr. Omar Farha for helpful
suggestions. C.A.M. acknowledges NSF, ARO, and NIH Director’s
Pioneer Award for generous financial support. M.G.R. acknowl-
edges the DoE Computational Science Graduate Fellowship Pro-
gram for support (Grant No. DE-FG02-97ER25308). M.A.R. and
T.S. acknowledge NSF-CHEM for partial support. We thank
IMSERC for analytical instrumentation help.
Supporting Information Available: Experimental and characteriza-
tion for 4-7. X-ray crystallographic files for 5 and 7 in CIF format.
Details on DFT studies of 5. These materials are available free of charge
References
(1) Morales-Morales, D. Jensen, C. M. The Chemistry of Pincer Compounds;
Elsevier: 2007.
(2) Singleton, J. T. Tetrahedron 2003, 59, 1837–1857.
(3) Albrecht, M.; Van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750–3781.
(4) Melaiye, A.; Simons, R. S.; Milsted, A.; Pingitore, F.; Wesdemiotis, C.;
Tessier, C. A.; Youngs, W. J. J. Med. Chem. 2004, 47, 973–977.
(5) (a) Szabo, K. J. Syn. Lett. 2006, 6, 0811–0824. (b) Gunanathan, C.; Ben-
David, Y.; Milstein, D. Science 2007, 317, 790–792. (c) Benito-Garagorri,
D.; Kirchner, K. Acc. Chem. Res. 2008, 41, 201–213.
(6) (a) Gossage, R. A.; Van De Kuil, L. A.; Van Koten, G. Acc. Chem. Res.
1998, 31, 423–431. (b) Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science
2005, 307, 1080–1082. (c) Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton,
K. G. J. Am. Chem. Soc. 2007, 129, 6003–6016. (d) Kubo, K.; Jones, D. N.;
Ferguson, M. J.; McDonald, R.; Cavell, R. G. J. Am. Chem. Soc. 2005,
127, 5314–5315.
Figure 1. (a) 11B NMR based structural evidence for pincer ligand 4 and
its palladated complex 5. (b and c) Crystallographically derived molecular
structures of 5 and 7, respectively (hydrogen atoms are omitted for clarity;
the carbons are gray and the borons light coral).
(7) Grimes, R. N. Carboranes; Academic Press: New York, 1970.
(8) (a) Plesek, J. Chem. ReV. 1992, 92, 269–278. (b) Farha, O. K.; Spokoyny,
A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. J. Am.
Chem. Soc. 2007, 129, 12680–12681. (c) Teixidor, F.; Barbera`, G.; Vaca,
A.; Kiveka¨s, R.; Sillanpa¨a¨, Oliva, J.; Vin˜as, C. J. Am. Chem. Soc. 2005,
127, 10158–10159.
(9) (a) Hawthorne, M. F. Acc. Chem. Res. 1968, 9, 281–288. (b) Hawthorne,
M. F.; Zink, J.; Skelton, J. M.; Bayer, M. J.; Liu, C.; Livshits, E.; Baer,
R.; Neuhauser, D. Science 2004, 303, 1849–1851. (c) Law, J. D.; Brewer,
K. N.; Herbst, R. S.; Todd, T. A.; Wood, D. J. Waste Management 1999,
19, 27–37. (d) C´ıgler, P.; Koz´ısek, M.; Reza´cova´, P.; Brynda, J.;
Otwinowski, Z.; Pokorna´, J.; Plesek, J.; Gru¨ner, B.; Doleckova´-Maresova´,
L.; Ma´sa, M.; Sedla´cek, J.; Bodem, J.; Kra¨usslich, H.-J.; Kra´l, V.;
Konvalinka, J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 15394–15399.
(10) (a) Hoel, E. L.; Hawthorne, M. F. J. Am. Chem. Soc. 1975, 97, 6388–
6395. (b) Kalinin, V. N.; Usatov, A. V.; Zakharkin, L. I. Proc. Indian Natl.
Sci. Acad. 1989, 55, 293–317.
(11) Van Manen, H.-J.; Nakashima, K.; Shinkai, S.; Kooijman, H.; Spek, A. L.;
Frank van Veggel, F. C. J. M.; Reinhoudt, D. N. Eur. J. Inorg. Chem.
2000, 2533–2540.
(12) Cross, R. J.; Green, T. H.; Keat, R. J. Chem. Soc., Dalton. Trans. 1976,
1150–1152.
(13) Cotton, F. A. AdVanced Inorganic Chemistry, 6th ed.; Wiley: 1999.
(14) (a) French, C. M.; Shimon, L. J. W.; Milstein, D. Angew. Chem., Int. Ed.
2005, 44, 1709–1711. (b) Schwartsburd, L.; Cohen, R.; Konstantinovski,
L.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 3603–3606.
(15) Liu, D.; Dang, L.; Chan, H.-S.; Lin, Z.; Xie, Z. J. Am. Chem. Soc. 2008,
130, 16103–16110.
(16) (a) Yoon, H. J.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 11590–11591.
(b) Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc. Chem.
Res. 2008, 41, 1618–1629. (c) Gianneschi, N. C.; Nguyen, S. T.; Mirkin,
C. A. J. Am. Chem. Soc. 2005, 127, 1644–1645. (d) Gianneschi, N. C.;
Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. V.; Rheingold,
A. L. J. Am. Chem. Soc. 2003, 125, 10508–10509.
“XBX” pincer complexes, where X is a general heteroatom, have
not yet been made, and therefore, a general route to such structures is
of a fundamental interest. As a demonstration of generality in accessing
ligands with different heteroatom arm moieties we also synthesized
and characterized the thioether, “SBS”, analogue of 4, ligand 6, and
its corresponding Pd(II) complex 7. Pincer ligand 6 was synthesized
in one step, via the dilithiation of m-carborane 1 and subsequent
alkylation with commercially available R-chlorothioanisole (Scheme
1b). This ligand was palladated following the procedure used to prepare
complex 5. Single crystal X-ray diffraction (Figure 1c), mass spec-
trometry (showing a similar fragmentation pattern), and 11B NMR
spectroscopy (see SI, p S17) confirm that 7 is the thioether analogue
of 5. Interestingly, 1H and 13C NMR spectra of 7 (see SI, pp S19-20)
suggest that only the anti-conformation of the complex exists at room
temperature and below, unlike its “SeBSe” counterpart 5. This is likely
due to the larger trans effect imposed by a selenoether moiety, which
weakens the Se-Pd bond and lowers the interconversion barrier.12
Preliminary DFT calculations (see SI, pp S5-8) provide interesting
insights with respect to this unique structural motif. Based on calculated
Mulliken and Lo¨wdin charge densities, there is a net negative charge
localized on the Pd atom and a relative positive charge concentrated
on B(2), compared to other borons in the cage. These calculations
also suggest a single bond between the Pd and B. Furthermore, the
Pd-B bonds in complexes 5 and 7 exhibit strong σ-electron donation
JA902526K
9
J. AM. CHEM. SOC. VOL. 131, NO. 27, 2009 9483