I. De6illers et al. / Tetrahedron Letters 43 (2002) 3161–3164
3163
carbonyl function of 6d as usual (compound 7d15)
followed by basic treatment and acidification gave imi-
dazopyrazine 1d16 in modest yield (Scheme 2). The
Rzeszotarska, B.; Pietrzynski, G.; Kubica, Z. Liebigs
Ann. Chem. 1988, 485.
12. Compounds 6b–d: General procedure:
1
typical pattern of the ethyl substituent was visible in H
To a solution of a,b-dehydro-N-[N-(trifluoroacetyl)-1-
phenylalanyl]-phenylalanine (1.00 g, 2.46 mmol, 1 equiv.)
in THF (20 mL) were added: triethylamine (342 mL, 2.5
mmol, 1.01 equiv.), aminoacetaldehyde dimethylacetal
(273 mL, 2.5 mmol, 1.01 equiv.) and hydroxybenzotria-
zole (339 mg, 2.5 mmol, 1.01 equiv.). The mixture was
stirred at 0°C and N-(3-dimethylaminopropyl)-N%-ethyl-
carbodiimide (472 mg, 2.46 mmol, 1 equiv.) was added.
Then, the mixture was stirred at room temperature dur-
ing the night. The precipitate was filtered and the filtrate
was evaporated under vacuo. The residue was diluted in
CH2Cl2 (50 mL), washed with a solution of 0.1N HCl
(3×15 mL), brine (15 mL) and then dried over MgSO4
and concentrated under vacuo. Column chromatography
on silica gel (CH2Cl2/AcOEt: 75/25) gave compound 6b
(0.70 g, 59% yield).
NMR (t at 1.18 l and q at 3.61 l). The required mass
was observed in APCI (atmospheric pressure chemical
ionization).
We could not improve the synthesis of compounds 1 by
varying the final cyclization conditions. Changing the
sequence of reactions, i.e. amine deprotection and sub-
sequent cyclization in acidic medium, furnished
untractable mixtures. Thus, our attempt to develop a
convergent biomimetic synthesis of pyridyl-substituted
luciferin derivatives was somewhat disappointing: only
compound 1c has been prepared on a small scale. In
our opinion, the classical approach towards imidazo-
pyrazines making use of pre-formed 1,4-pyrazine hete-
rocycles remains the best route.18
Compound 6b: white solid; mp 61.5–62.5°C; Rf 0.25
(SiO2; CH2Cl2–EtOAc, 75:25); 1H NMR (CDCl3, 500
MHz) l 2.94 (dd, J=13.7 Hz, 5.6 Hz, 1H), 3.18 (dd,
J=13.7 Hz, 8.2 Hz, 1H), 3.30 (s, 6H), 3.34 (dd, J=5.8
Hz, 5.2 Hz, 2H), 4.37 (t, J=5.2 Hz, 1H), 4.82 (ddd,
J=8.2 Hz, 8.0 Hz, 5.6 Hz, 1H), 6.69 (t, J=5.8 Hz, NH),
6.88 (s, 1H), 7.12–7.20 (m, 10H), 7.85 (d, J=8.0 Hz,
NH), 8.76 (s, NH); 13C NMR (CDCl3, 125 MHz) l 36.9,
41.2, 53.8, 53.9, 54.8, 102.0, 115.4, 127.1, 127.8, 128.5,
128.6, 129.0, 129.1, 129.3, 132.8, 135.2, 157.2, 165.9,
169.3. Anal. calcd for C24H26F3N3O5 (493.48): C, 58.41;
H, 5.31; N, 8.52%. Found: C, 57.99; H, 5.29; N, 8.4%.
Compound 6c: white solid; mp 96–97.5°C; Rf 0.21 (SiO2;
CH2Cl2–EtOAc, 60:40); 1H NMR (CDCl3, 300 MHz) l
2.87 (dd, J=13.9 Hz, 8.4 Hz, 1H), 3.06 (dd, J=13.9 Hz,
7.7 Hz, 1H), 3.21 (s, 6H), 3.68 (dd, J=14.1 Hz, 5.4 Hz,
1H), 3.81 (dd, J=14.1 Hz, 6.3 Hz, 1H), 4.74 (ddd, J=8.4
Hz, 7.7 Hz, 7.0 Hz, 1H), 6.42 (dd, J=6.3 Hz, 5.4 Hz,
NH), 6.67 (s, 1H), 6.97–7.19 (m, 10H), 7.45 (d, J=6.1
Hz, 2H), 8.06 (d, J=7.0 Hz, NH), 8.39 (d, J=6.1 Hz,
2H), 9.05 (s, NH); 13C NMR (CDCl3, 75 MHz) l 37.1,
43.7, 49.3, 49.4, 55.1, 101.0, 114.3, 122.8, 127.4, 128.0,
128.1, 128.7, 128.8, 129.1, 129.6, 132.8, 135.1, 148.4,
149.6, 157.6, 165.0, 169.3. Anal calcd for C29H29F3N4O5
(570.56): C, 61.05; H, 5.12; N, 9.82%. Found: C, 61.46;
H, 5.46; N, 9.56%.
Compound 6d: colorless oil; Rf 0.21 (SiO2; CH2Cl2–
EtOAc, 60:40); 1H NMR (acetone-d3, 500 MHz) l 1.53
(d, J=7.2 Hz, 3H), 3.14 (dd, J=13.7 Hz, 5.3 Hz, 1H),
3.28 (dd, J=5.5 Hz, 2.4 Hz, 2H), 3.30 (s, 6H), 3.34 (dd,
J=13.7 Hz, 6.4 Hz, 1H), 4.39 (t, J=5.5 Hz, 1H), 4.88
(ddd, J=6.8 Hz, 6.4 Hz, 5.3 Hz, 1H), 6.54 (q, J=7.2 Hz,
1H), 6.99 (t, J=2.4 Hz, NH), 7.24 (m, 1H), 7.31 (m, 2H),
7.35 (m, 2H), 8.75 (s, NH), 8.75 (d, J=6.8 Hz, NH); 13C
NMR (acetone-d3, 500 MHz) l 13.3, 38.0, 42.0, 53.7,
54.0, 56.4, 103.2, 116.8, 127.7, 129.3, 130.2, 130.3, 131.1,
137.6, 157.8, 164.8, 169.5; MS (APCI) m/z=431.2 (M,
15%), 430.2 (M−1, 100%), (C19H24F3N3O5).
References
1. For recent reviews, see: (a) Jones, K.; Hibbert, F.;
Keenan, M. TIBTECH 1999, 17, 477; (b) Prendergast, F.
G. Nature 2000, 405, 291; (c) Nakamura, H.; Wu, C.;
Inouye, S.; Murai, A. J. Am. Chem. Soc. 2001, 123, 1523.
2. (a) Dubuisson, M. L. N.; De Wergifosse, B.; Trouet, A.;
Baguet, F.; Marchand-Brynaert, J.; Rees, J.-F. Biochem.
Pharmacol. 2000, 60, 471; (b) Cavalier, J.-F.; Burton, M.;
Dussart, F.; Marchand, C.; Rees, J.-F.; Marchand-
Brynaert, J. Bioorg. Med. Chem. 2001, 9, 1037.
3. Devillers, I.; Dive, G.; De Tollenaere, C.; Falmagne, B.;
De Wergifosse, B.; Rees, J.-F.; Marchand-Brynaert, J.
Bioorg. Med. Chem. Lett. 2001, 11, 2305.
4. (a) Basiuk, V. A. Russ. Chem. Rev. 1997, 66, 187; (b)
Porter, A. E. A. In Pyrazines and their Benzo Derivatives
in Comprehensive Heterocyclic Chemistry; Katritzky, A.
R.; Rees, C. W., Eds.; Pergamon Press: Oxford, New
York, 1984; Vol. 3, pp. 157–197.
5. (a) McCapra, F.; Chang, Y. C. J. Chem. Soc., Chem.
Commun. 1967, 1011; (b) Kishi, Y.; Tanino, H.; Goto, T.
Tetrahedron Lett. 1972, 747; (c) Kuse, M.; Isobe, M.
Tetrahedron 2000, 56, 2629; (d) Wu, C.; Nakamura, H.;
Murai, A.; Shimomura, O. Tetrahedron Lett. 2001, 42,
2997.
6. (a) McCapra, F.; Roth, M. J. Chem. Soc., Chem. Com-
mun. 1972, 894; (b) McCapra, F.; Manning, M. J. J.
Chem. Soc., Chem. Commun. 1973, 467.
7. (a) El Yazal, J.; Prendergast, F. G.; Shaw, D. E.; Pang,
Y.-P. J. Am. Chem. Soc. 2000, 122, 11411; (b) Donnelly,
M.; Fedeles, F.; Wirstam, M.; Siegbahn, P. E.; Zimmer,
M. J. Am. Chem. Soc. 2001, 123, 4679.
8. Noda, K.; Shimohigashi, Y.; Izumiya, N. In h,i-Dehy-
droamino Acids and Peptides in the Peptides, Analysis,
Synthesis and Biology; Gross, E.; Meisenhofer, J., Eds.;
Academic Press: New York, 1985; Vol. 5, pp. 285–339.
9. Rzeszotarska, B.; Makowski, M.; Kubica, Z. OPPI 1984,
16, 136.
13. (a) Lamattina, J. L.; Suleske, R. T. Org. Synth. 1985, 64,
19; (b) Ganelli, C. R.; Hosseini, S. K.; Khalaf, Y. S.;
Tertiuk, W.; Arrang, J. M.; Garbarg, M.; Ligneau, X.;
Scwartz, J. C. J. Med. Chem. 1995, 17, 3342.
10. Rzeszotarska, B.; Makowski, M.; Kubica, Z. Pol. J.
Chem. 1984, 58, 293.
11. (a) Makowski, M.; Rzeszotarska, B.; Kubica, Z.; Wiec-
14. Jung, M. E.; Andrus, W. A.; Ornstein, P. L. Tetrahedron
zorek, P. Liebigs Ann. Chem. 1984, 920; (b) Smelka, L.;
Lett. 1977, 40, 4175.