R. Shankar et al. / Journal of Organometallic Chemistry 650 (2002) 223ꢁ
/
230
229
[3] (a) H. Stuger, R. West, Macromolecules 18 (1985) 2349;
(b) L.A. Harrah, J.M. Zeigler, Macromolecules 20 (1987) 60;
separate layer as oily viscous gum. The dissolution/
separation procedure was repeated three times to
remove the catalyst and decomposition products, yield-
ing the polysilane 1 (Yield 58%). Following the similar
procedure as above, the polymer 2 and 3 were obtained
48 and 60% yield, respectively.
(c) A.R. Wolff, J. Maxka, R. West, J. Polym. Sci. Part A Polym.
Chem. 26 (1988) 713.
[4] (a) H.K. Kim, K. Matyjaszewski, J. Am. Chem. Soc. 110 (1989)
3321;
(b) R.D. Miller, D. Thompson, R. Soorivakumaran, G.N. Fickes,
J. Polym. Sci. Polym. Chem. 20 (1991) 813;
(c) G.J. Price, J. Chem. Soc. Chem. Commun. (1992) 1209.
[5] (a) E. Hengge, H. Firgo, J. Organomet. Chem. 212 (1981) 155;
(b) C. Jammeng, S. Graschy, E. Hengge, Organometallics 13
(1994) 2397;
For 1: 1H-NMR (CDCl3):d 0.04 (s, SiMe2); 0.54ꢁ
(m, CH2CH2); 3.4ꢁ3.8 (SiH backboneꢂSiH2 side
groups); 3.7ꢁ
3.9 (SiH pendant); 13C-NMR (CDCl3): d
4.4 (SiMe2); 2.6ꢁ5.4 (ꢁCH2); 11.2ꢁ14.3 (Me2-
SiHCH2); 29Si-NMR (CDCl3): d ꢃ
7.3 to ꢃ10.9 (Me2-
SiH); ꢃ51.3 to ꢃ61.5 (SiH backboneꢂSiH2 end
groups); IR (cmꢃ1): 2108 (nSiH); UV (DCM, nm)
265; GPC (THF): Mwꢀ5170; Mnꢀ2460.
For 2: H-NMR (CDCl3): d 0.34ꢁ1.18 (alkyl); 3.46ꢁ
3.72 (SiH backboneꢂ
SiH2 side groups); 13C-NMR
(CDCl3): d 1.4ꢁ3.4 (CH3ꢁCH2Siꢁ CH2SiH), 6.4ꢁ8.4
(Et3SiCH2ꢃ
CH3); 29Si-NMR (CDCl3): d 7.8, 8.3,
8.6, 9.4 (Et3Si); ꢃ51.6 to ꢃ60.7 (SiH backboneꢂSiH2
end groups); IR (cmꢃ1): 2117 (nSiH); UV (DCM, nm)
262; GPC (THF): Mwꢀ4670; Mnꢀ3800.
For 3: H-NMR (CDCl3):d 0.38 (SiMe2); 0.72ꢁ
CH2CH2ꢁ); 3.46ꢁ3.78 ( SiH back boneꢂSiH2 end
groups); 7.47ꢁ 3.1
7.61 (m, Ph) 13C-NMR (CDCl3): d ꢃ
(SiMe2); ꢃ0.8 to 3.7 (CH2); 10.9 to 13.6 (PhMe2-
SiHCH2); 128.7 to 134.9 (Siꢁ
Ph); 29Si-NMR (CDCl3):
d 0.5 to ꢃ1.9 (SiH pendant); ꢃ48.5 to ꢃ60.2 (SiH
backboneꢂ
SiH2 end groups); IR (cmꢃ1): 2103 (nSiH);
UV (DCM, nm) 261; GPC (THF): Mwꢀ3110; Mnꢀ
/
0.98
/
/
/
ꢃ
/
/
/
/
(c) K. Huang, L.A. Vermeulen, J. Chem. Soc. Chem. Commun.
(1998) 247.;
/
/
/
/
/
(d) S. Kashimura, M. Ishifune, N. Yamashita, H.-B. Bu, M.
Takebayashi, S. Kitajima, D. Yoshiwara, Y. Kataoka, R.
Nishida, S.-I. Kawasaki, H. Murase, T. Shono, J. Org. Chem.
64 (1999) 6615.
/
/
1
/
/
[6] (a) A.R. Wolff, I. Nozue, J. Maxka, R. West, J. Polym. Sci. Part
A Polym. Chem. 26 (1988) 701;
/
/
/
/
ꢂ
/
/
(b) J. Maxka, F. Mitter, D. Powell, R. West, Organometallics 10
(1991) 660;
/
ꢂ
/
/
/
/
(c) E. Fossum, K. Matyjaszewski, Macromolecules 28 (1995)
1618.
[7] (a) C.T. Aitken, J.F. Harrod, E. Samuel, J. Organomet. Chem.
279 (1985) C11;
/
/
1
/
1.21
(b) C.T. Aitken, J.F. Harrod, E. Samuel, J. Am. Chem. Soc. 108
(1986) 4059;
(ꢁ
/
/
/
/
/
/
(c) C.T. Aitken, J.F. Harrod, E. Samuel, Can. J. Chem. 64 (1986)
1677.
/
[8] (a) H.-G. Woo, T.D. Tilley, J. Am. Chem. Soc. 111 (1989) 8043;
(b) J.P. Banovetz, K.M. Stein, R.M. Waymouth, Organometallics
10 (1991) 3430;
/
/
/
/
/
(c) R.M. Shaltout, J.Y. Corey, Main Group Chem. 1 (1995) 115;
(d) V.K. Dioumaev, J.F. Harrod, Organometallics 15 (1996) 3859;
(e) N. Choi, S.-Y. Onozawa, T. Sakkura, M. Tanaka, Organo-
metallics 16 (1997) 2765;
/
/
2880.
(f) B.J. Grimmond, J.Y. Corey, P.N. Rath, Organometallics 18
(1999) 404;
(g) V.K. Dioumaev, K. Rahimian, F. Gauvin, J.F. Harrod,
Organometallics 18 (1999) 2249;
Acknowledgements
(h) B.J. Grimmond, J.Y. Corey, Organometallics 18 (1999) 2223;
(i) Y. Obora, M. Tanaka, J. Organomet. Chem. 595 (2000) 1;
(j) B.J. Grimmond, N.P. Rath, J.Y. Corey, Organometallics 19
(2000) 2975;
The authors are grateful to DST (India) for financial
support and C.S.I.R. (India) for S.R.F. to A. Saxena.
(k) B.J. Grimmond, J.Y. Corey, Organometallics 19 (2000) 3776;
(l) S. Bourg, R.J.P. Corriu, M. Enders, J.J.J. Moreau, Organo-
metallics 14 (1995) 564.
References
[9] (a) Y.P. Sun, G.M. Wallraff, R.D. Miller, J. Michl, J. Photochem.
Photobiol. A Chem. 62 (1992) 333;
[1] (a) R.D. Miller, J. Michl, Chem. Rev. 89 (1989) 1359;
(b) R. West, J. Organomet. Chem. 300 (1986) 327;
(b) Y.P. Sun, J. Michl, J. Am. Chem. Soc. 114 (1992) 8186;
(c) Y.P. Sun, Y. Hamada, L.M. Huang, J. Haxka, J.S. Hsiao, R.
West, J. Michl, J. Am. Chem. Soc. 114 (1992) 6301.
[10] (a) R.D. Miller, R. Sooriyakumaran, Macromolecules 21 (1988)
3120;
(c) R.D. Miller, Angew. Chem. Adv. Mater. 101 (1989) 1773;
(d) R. West, in: A.G. Davies (Ed.), Comprehensive Organome-
tallic Chemistry II, vol. 2 (Chapter 3), Pergamon Press, Oxford,
England, 1995, pp. 77ꢁ110;
/
(b) K.H. Pannell, J.M. Rozell, J.M. Zeigler, Macromolecules 21
(1988) 276;
(e) I. Manners, Angew. Chem. Int. Ed. Engl. 35 (1996) 1602.
[2] (a) S. Yajima, J. Hayashi, M. Omori, Chem. Lett. (1975) 931.;
(b) Z.F. Zhang, F. Babonneau, R.M. Laine, Y. Mu, J.F. Harrod,
A.J. Rahu, J. Am. Ceram. Soc. 74 (1991) 670;
(c) C.-H. Yuan, R. West, Macromolecules 26 (1993) 2645;
(d) C.-H. Yuan, R. West, Chem. Commun. (1997) 1825.;
(e) R. YuanC.-H.West, Macromolecules 33 (2000) 1503;
(f) S. Toyoda, M. Fujiki, C.-H. Yuan, R. West, Macromolecules
33 (2000) 1503.
(c) R.M. Laine, F. Babonneau, Chem. Mater. 5 (1993) 260;
(d) D. Seyferth, M. Tasi, H.-G. Woo, Chem. Mater. 7 (1995) 236;
(e) R.J.P. Corriu, M. Enders, S. Huille, J.J.E. Moreau, Chem.
Mater. 6 (1994) 15;
[11] (a) P. Trefonas, J.R. Damewood, R. West, R.D. Miller, Organo-
metallics 4 (1985) 1318;
(f) R.J.P. Corriu, M. Enders, S. Huille, L. Lutsen, J.J.E. Moreau,
in: J.F. Harrod, R.M. Laine, Application of organometallic
chemistry in the preparation and processing of materials, Nato
ASI, 297(1995) 185.
(b) E.K. Karikari, A.J. Greso, B.L. Famer, R.D. Miller, J.F.
Rabolt, Macromolecules 26 (1993) 3937;
(c) S. Mazieres, M.K. Raymond, G. Rabbe, A. Prodi, J. Michl, J.