C O M M U N I C A T I O N S
Scheme 3. Deuterium-Labeling Experiment
observation that substrate 25 provides the dimeric olefin 26 which
likely originates from the same type of zwitterionic intermediate.
Since the arene in 25 is somewhat less activated, elimination by
loss of proton outperforms the Friedel-Crafts pathway and leads
to the observed product 26.
In summary, we have shown that alkylidenecyclopropanes, on
activation with catalytic amounts of PtCl2 or, preferentially, PtCl2/
CO (1 atm), undergo previously unknown ring expansions, thus
opening a convenient new entry into variously substituted cy-
clobutenes and derivatives thereof. Further investigations on this
and related types of noble metal-catalyzed rearrangements are
ongoing and will be reported in due course.
Scheme 4. Cyclobutene Formation/ROM/RCM Cascade
Acknowledgment. Financial support by the MPG and the Fonds
der Chemischen Industrie is gratefully acknowledged. We thank
Umicore, Hanau, for a generous gift of noble metal salts and B.
Gabor and R. Ettl for their help with the NMR investigations.
Scheme 5. PtCl2-Catalyzed Dimerization
Supporting Information Available: Experimental details, including
the formation of alkylidenecyclopropanes by Julia-Kocienski olefi-
nation. This material is available free of charge via the Internet at http://
pubs.acs.org
References
(1) Reviews: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. ReV. 2002,
102, 813. (b) Me´ndez, M.; Echavarren, A. M. Eur. J. Org. Chem. 2002,
15. (c) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (d) Me´ndez,
M.; Mamane, V.; Fu¨rstner, A. CHEMTRACTS 2003, 16, 397. (e) Trost,
B. M.; Krische, M. J. Synlett 1998, 1. (f) Hashmi, A. S. K. Gold Bull.
2003, 36, 3. (g) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45,
200.
Scheme 6. Cyclodimerizations of Electron-Rich Substrates
(2) (a) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc.
2004, 126, 3700. (b) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc.
2006, 128, 1798. (c) Yang, C.-G.; He, C. J. Am. Chem. Soc. 2005, 127,
6966. (d) Nguyen, R.-V.; Yao, X.-Q.; Bohle, D. S.; Li, C.-J. Org. Lett.
2005, 7, 673. (e) Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884.
(f) Koh, J. H.; Gagne´, M. R. Angew. Chem., Int. Ed. 2004, 43, 3459. (g)
Kerber, W. D.; Gagne´, M. R. Org. Lett. 2005, 7, 3379. (h) Hahn, C.;
Cucciolito, M. E.; Vitagliano, A. J. Am. Chem. Soc. 2002, 124, 9038. (i)
Wang, X.; Widenhoefer, R. A. Organometallics 2004, 23, 1649.
(3) (a) Fu¨rstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc.
1998, 120, 8305. (b) Fu¨rstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem.
Soc. 2000, 122, 6785. (c) Fu¨rstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem.
Soc. 2001, 123, 11863. (d) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner,
A. J. Am. Chem. Soc. 2004, 126, 8654. (e) Fu¨rstner, A.; Hannen, P. Chem.
Commun. 2004, 2546. (f) Mamane, V.; Hannen, P.; Fu¨rstner, A. Chem.
Eur. J. 2004, 10, 4556. (g) Fu¨rstner, A.; Mamane, V. J. Org. Chem. 2002,
67, 6264. (h) Fu¨rstner, A.; Mamane, V. Chem. Commun. 2003, 2112. (i)
Fu¨rstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006.
(4) Review: Brandi, A.; Goti, A. Chem. ReV. 1998, 98, 589.
(5) Reviews: (a) Nakamura, I.; Yamamoto, Y. AdV. Synth. Catal. 2002, 344,
111. (b) Binger, P.; Schmidt, T. In Houben-Weyl; de Meijere, A., Ed.;
Thieme: Stuttgart, 1997; Vol. E17c, p 2217.
(6) Cyclobutenes are formed in moderate yields using RSCl or RSeCl as
electrophiles, cf.: (a) Liu, L.-P.; Shi, M. J. Org. Chem. 2004, 69, 2805.
(b) see also: Hanack, M.; Ba¨ssler, T.; Eymann, W.; Heyd, W. E.; Kopp,
R. J. Am. Chem. Soc. 1974, 96, 6686.
(7) In contrast to PtCl2, gold catalysts [AuCl, AuCl3, (PPh3)AuCl, (PPh3)-
AuNTf2] gave less than 10% conversion when applied to substrate 7.
Moreover, control experiments showed no cyclobutene formation upon
simple heating of the substrate in toluene in the absence of PtCl2.
(8) (a) Fu¨rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127,
8244. (b) Fu¨rstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024.
(9) (a) A¨ıssa, C. J. Org. Chem. 2006, 71, 360. (b) Review: Blakemore, P. R.
J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(10) For a more laborious alternative see: Bernard, A. M.; Frongia, A.; Piras,
P. P.; Secci, F. Synlett 2004, 1064.
(11) For a recent example of a transition metal cyclobutylidene complex see:
Alvarez, P.; Lastra, E.; Gimeno, J.; Bassetti, M.; Falvello, L. R. J. Am.
Chem. Soc. 2003, 125, 2386.
(12) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118,
100.
(13) (a) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (b) Connon, S.
J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900.
Yet other possibilities were encountered when the PtCl2-catalyzed
rearrangement was applied to substrates bearing very electron-rich
arene substituents. Even though compound 11 provides the corre-
sponding cyclobutene 12 in reasonable yield (cf. Table 1, entry 4),
the dimeric product 21 is obtained when the reaction is performed
at higher concentrations (Scheme 5). The unusual structure of this
compound was unambiguously elucidated by extensive NMR
investigations (cf. Supporting Information). Its formation is readily
explained by assuming that the Pt(2+) template is not only able to
activate the starting alkylidenecyclopropane but can similarly also
activate the double bond of the resulting primary product 12. Attack
of a second molecule of 12 then leads to the putative zwitterionic
intermediate 20 which undergoes a Friedel-Crafts alkylation of
one of the arene rings on its own backbone.14 The ensuing
re-aromatization furnishes the proton necessary to release the
catalyst.
The same behavior was observed for compound 22 which affords
product 23 and its regioisomer 24 (dr ) 9:1) in 87% combined
yield (Scheme 6). This mechanistic proposal also accounts for the
(14) For precedence, see: Fu¨rstner, A.; Voigtla¨nder, D.; Schrader, W.; Giebel,
D.; Reetz, M. T. Org. Lett. 2001, 3, 417.
JA061392Y
9
J. AM. CHEM. SOC. VOL. 128, NO. 19, 2006 6307