Organic Letters
Letter
(5) Wu, J.; Ruiz-Rodriguez, J.; Comstock, J. M.; Dong, J. Z.; Bode, J.
W. Chem. Sci. 2011, 2, 1976−1979. Bode, J. W.; Fox, R. M.; Baucom,
K. D. Angew. Chem., Int. Ed. 2006, 45, 1248−1252.
(6) Zheng, J.-S.; Yu, M.; Qi, Y.-K.; Tang, S.; Shen, F.; Wang, Z.-P.;
Xiao, L.; Zhang, L.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2014, 136,
3695−3704.
iodonium. The uncertainty surrounding the actual redox
pathway leading from 7 to amide may be of more academic
value, and it may be difficult to discern whether iodonium or
bromonium is the actual propagating species (or whether they
are mutually exclusive). However, we have noted that reactions
using NIS exhibit both faster conversion and less complex
crude reaction mixtures than alternatives.26
(7) Zheng, J.-S.; Tang, S.; Huang, Y.-C.; Liu, L. Acc. Chem. Res. 2013,
46, 2475−2484.
Notwithstanding this uncertainty, analysis of the aerobic
UmAS protocol substoichiometrically in NIS was evaluated in
several existing UmAS contexts. A direct comparison of UmAS
couplings of α-bromonitroalkanes and α-methyl benzyl amine
led to comparable yields in most cases (Table 2). Several
examples provided a higher yield of amide using aerobic
conditions and a 5 mol % NIS loading. The yield was
significantly lower (e.g., 66% vs 51% yield) in only two cases
when using substoichiometric NIS (Table 2, entries 5−6). A
similar trend was observed when a range of functionalized
amines were compared using the two protocols (Table 3).
In conclusion, consideration of a mechanistic hypothesis that
Umpolung Amide Synthesis under aerobic conditions provides
a pathway to electrophilic halonium regeneration resulted in
the development of a protocol using substoichiometric N-
iodosuccinimide. The protocol described here does not require
reagent excess and avoids the production of coproducts that
present purification issues. The fact that the overall route from
bromonitromethane to chiral nonracemic α-amino amide is
substoichiometric in all components, except for the base
(K2CO3) and oxygen, provides a two-step solution for a
catalytic, enantioselective synthesis of α-amino amides and
peptides.
(8) Wang, T.; Danishefsky, S. J. Proc. Natl. Acad. Sci. U.S.A. 2013,
110, 11708−11713.
(9) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc.
Rev. 2014, 43, 2714−2742. Singh, C.; Kumar, V.; Sharma, U.; Kumar,
N.; Singh, B. Curr. Org. Synth. 2013, 10, 241−264.
(10) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org.
Chem. 1996, 61, 4560−4567. Marcelli, T. Angew. Chem., Int. Ed. 2010,
49, 6840−6843. Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew.
Chem., Int. Ed. 2008, 47, 2876−2879. Charville, H.; Jackson, D.;
Hodges, G.; Whiting, A. Chem. Commun. (Cambridge, U. K.) 2010, 46,
1813−1823.
(11) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798−
13799. Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796−
13797. De Sarkar, S.; Studer, A. Org. Lett. 2010, 12, 1992−1995.
Chiang, P.-C.; Kim, Y.; Bode, J. W. Chem. Commun. (Cambridge, U. K.)
2009, 4566−4568.
(12) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317,
790−792. Nordstrøm, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc.
2008, 130, 17672−17673. Muthaiah, S.; Ghosh, S. C.; Jee, J.-E.; Chen,
C.; Zhang, J.; Hong, S. H. J. Org. Chem. 2010, 75, 3002−3006. Saha,
B.; Sengupta, G.; Sarbajna, A.; Dutta, I.; Bera, J. K. J. Organomet.
Chem., DOI: 10.1016/j.jorganchem.2013.12.051. Srimani, D.;
Balaraman, E.; Hu, P.; Ben-David, Y.; Milstein, D. Adv. Synth. Catal.
2013, 355, 2525−2530. Cho, D.; Ko, K. C.; Lee, J. Y. Organometallics
2013, 32, 4571−4576.
(13) Kang, B.; Fu, Z.; Hong, S. H. J. Am. Chem. Soc. 2013, 135,
11704−11707.
(14) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712. Chen,
C.; Hong, S. H. Org. Biomol. Chem. 2011, 9, 20−26.
(15) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. J.
Am. Chem. Soc. 2003, 125, 7754−7755.
(16) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465,
1027−1032.
(17) For an umpolung N-phenyl hydroxamic acid synthesis, see:
Wong, F. T.; Patra, P. K.; Seayad, J.; Zhang, Y.; Ying, J. Y. Org. Lett.
2008, 10, 2333−2336.
(18) Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889−917.
(19) Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012,
134, 15233−15236.
(20) Shackleford, J. P.; Shen, B.; Johnston, J. N. Proc. Natl. Acad. Sci.
U.S.A. 2012, 109, 44−46.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectroscopic data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(21) Prior to the work reported here, aside from the careful
mechanistic studies (ref 20), a typical reaction setup involved a vial or
flask capped with a septum, creating a static atmosphere. In these
cases, exposure to atmospheric oxygen is best described as variable.
(22) THF was originally used as the solvent, but its oxidation by NIS
to the corresponding lactol and lactone was observed when amide
formation was slow. Dimethoxyethane (DME) was identified as the
optimal solvent for these studies since it did not suffer from detectable
oxidation.
(23) Hodges, G. R.; Ingold, K. U. J. Am. Chem. Soc. 1999, 121,
10695−10701. Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1998, 120,
3458−3463.
(24) Finkbeiner, P.; Nachtsheim, B. J. Synthesis 2013, 45, 979−999.
(25) Papayannis, D. K.; Kosmas, A. M. Chem. Phys. 2005, 315, 251−
258.
ACKNOWLEDGMENTS
■
Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National
Institutes of Health (GM 063557). Predoctoral fellowship
support by the National Science Foundation (J.P.S.) is
gratefully acknowledged.
REFERENCES
■
(1) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B.
A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411−420.
(2) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471−479.
Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol.
Struct. 2005, 34, 91−118.
(3) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149−2154. Valeur,
E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606−631.
(4) Dawson, P. E.; Muir, T. W.; Clarklewis, I.; Kent, S. B. H. Science
1994, 266, 776−779. Haase, C.; Seitz, O. Angew. Chem., Int. Ed. 2008,
47, 1553−1556.
(26) NBS is a competent halonium source for the reaction. However,
the conversion to amide is slower and hindered by the formation of
the dibrominated nitroalkane.
D
dx.doi.org/10.1021/ol502089v | Org. Lett. XXXX, XXX, XXX−XXX