10.1002/anie.201904263
Angewandte Chemie International Edition
COMMUNICATION
would then furnish the b-methoxy alkanoate 2 with concurrent
regeneration of the Cu(I) species.[27] In line with this mechanistic
hypothesis, the yield of 2a was reduced to 28% when the
reaction was performed under CO atmosphere under otherwise
identical conditions. An experimental protocol was designed
that allowed us to detect the generated CO under the reaction
conditions (See SI).
Keywords: Alkene difunctionalization; methoxycarbonyl
radical; homogeneous catalysis; heterocycle; methyl formate
[1]
[2]
a) M. D. Bachi, E. Bosch, Tetrahedron Lett. 1986, 27, 641-644; b) M.
D. Bachi, E. Bosch, J. Org. Chem. 1992, 57, 4696-4705; c) C. Plessis,
S. Derrrer, Tetrahedron Lett. 2001, 42, 6519-6522.
a) A. K. Singh, R. K. Bakshi, E. J. Corey, J. Am. Chem. Soc. 1987,
109, 6187-6189; b) B. M. Trost, J. Waser, A. Meyer, J. Am. Chem. Soc.
2008, 130, 16424-16434; c) J. E. Forbes, R. N. Saicic, S. Z. Zard,
Tetrahedron 1999, 55, 3791-3802; d) S. Takahashi, T. Nakata, J. Org.
Chem. 2002, 67, 5739-5752.
CuII
R2
R2
R1
OMe
COOMe
O
CuIL
R1
R2
MeO
H
2
1
MeO
R2 CuIII
tBuO
tBuOH
[3]
[4]
R. Bernardi, T. Caronna, R. Galli, F. Minisci, M. Perchinunno,
Tetrahedron Lett. 1973, 14, 645-648; b) F. Coppa, F. Fontana, E.
Lazzarini, F. Minisci, G. Pianese, L. Zhao, Tetrahedron Lett. 1992, 33,
3057-3060.
L
CuIL
R1
R1
O
COOMe
B
G
MeO
CO
A
a) T. Taniguchi, Y. Sugiura, H. Zaimoku, H. Ishibashi, Angew. Chem.
Int. Ed. 2010, 49, 10154-10157; Angew. Chem. 2010, 122, 10352-
10355. Contribution from other groups, see: b) Y.-H. Su, Z. Wu, S.-K.
Tian, Chem. Commun. 2013, 49, 6528-6530; c) X. Xu, Y. Tang, X. Li,
G. Hong, M. Fang, X. Du, J. Org. Chem. 2014, 79, 446-451; d) R. Ding,
Q.-C. Zhang, Y.-H. Xu, T.-P. Loh, Chem. Commun. 2014, 50, 11661-
11664; e) G. Wang, S. Wang, J. Wang, S.-Y. Chen, X.-Q. Yu,
Tetrahedron 2014, 70, 3466-3470; f) Z. Zong, S. Lu, W. Wang, Z. Li,
Tetrahedron Lett. 2015, 56, 6719-6721; For addition to isocyanide,
see: g) X. Li, M. Fang, P. Hu, G. Hong, Y. Tang, X. Xu, Adv. Synth.
Catal. 2014, 356, 2103-2106; h) C. Pan, J. Han, H. Zhang, C. Zhu, J.
Org. Chem. 2014, 79, 5374-5378.
OMe
O
R2 CuIIL
R2 CuIII
L
R1
R1
COOMe
C
COOMe
O
D
MeO
A
Scheme 6. Possible reaction pathway.
We have also carried out kinetic studies on the initial rate of
the methoxy methoxycarbonylation of styrene and its 4-
substituted derivatives (4-Cl, 4-F, 4-Me, 4-OMe) and found that
the rate of formation followed the following order: 2w (R =
OMe) >> 2v (R = 4-Me) ∼ 2u ( R = H) > 2z (R = 4-Cl) > 2y (R =
4-F, see SI). Considering that the radical A is nucleophilic, this
observation could be tentatively accounted for by the fact that
the electron rich alkene 1v (R = 4-Me) is more prone to form the
alkene-Cu complex B, accelerating therefore the subsequent
radical addition reaction.
[5]
[6]
Y. Slutskyy, L. E. Overman, Org. Lett. 2016, 18, 2564-2567.
S. H. Kyne, C. H. Schiesser, H. Matsubara, Org. Biomol. Chem. 2007,
5, 3938-3943.
[7]
Acyl radical is also nucleophilic and reacts preferentially with electron-
poor double bond, see: a) V. Chudasama, R. J. Fitzmaurice, S.
Caddick, Nat. Chem. 2010, 2, 592-596; b) T. Wu, H. Zhang, G. Liu,
Tetrahedron 2012, 68, 5229-5233; c) M.-B. Zhou, R.-J. Song, X.-H.
Ouyang, Y. Liu, W.-T. Wei, G.-B. Deng, J.-H. Li, Chem. Sci. 2013, 4,
2690-2694; d) F. Jia, K. Liu, H. Xi, S. Lu, Z. Li, Tetrahedron. Lett. 2013,
54, 6337-6340; e) H. Wang, L.-N. Guo, X.-H. Duan, Adv. Synth. Catal.
2013, 355, 2222-2226; f) L. Zhang, H. Huang, C. Yang, W. Xia, Org.
Lett. 2015, 17, 1034-1037.
In summary, methyl formate was successfully exploited for
[8]
[9]
a) For iron-catalyzed peroxidation-carbamoylation of alkenes using
formamides as precursors of aminoacyl radicals, see: J.-K. Cheng, L.
Shen, L.-H. Wu, X.-H. Hu, T.-P. Loh, Chem. Commun. 2017, 53,
12830-12833; b) For iron-catalyzed carbo-carbamoylation of electron-
poor akenes, see: V. G. Correia, J. C. Abreu, C. A. E. Barata, L. H.
Andrade, Org. Lett. 2017, 19, 1060-1063.
the first time in
a
synthetically useful Cu-catalyzed
difunctionalization of alkenes. Acting as a donor of both
methoxycarbonyl and methoxy groups,[28] methyl formate
transforms styrene and its derivatives to value-added b-
methoxy alkanoates, cinnamates as well as medicinally
important five-membered heterocycles. It was believed that “the
reaction of alkyl radicals is synthetically significant only when
the olefinic double bond is conjugated with electron-withdrawing
groups owing to the nucleophilic character of the alkyl
radical”.[29] While the statement is correct in absolute sense, the
landscape is changing and the transition metal-catalyzed
difunctionalization of electron-rich alkenes involving addition of
nucleophilic alkyl radical is seen in the recent literature.[30] We
surmised that pre-coordination of electron rich double bond to
metal might play an important role and it could have general
implications in designing novel radical-based transformations.
For an account on the reactivity of acyl radical, see: d) C. H. Schiesser,
U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303-313.
[10] K. Bartel, A. Goosen, A. Scheffer, J. Chem. Soc. (C) 1971, 3766-3769.
[11] D. E. Zabel, W. S. Trahanovsky, J. Org. Chem. 1972, 37, 2413-2418.
[12] M. Fiorentino, L. Testaferri, M. Tiecco, L. Troisi, J. Org. Chem. 1976,
41, 173-175.
[13] P. A. Simakov, F. N. Martinez, J. H. Horner, M. Newcomb, J. Org.
Chem. 1998, 63, 1226-1232.
[14] M. A. Lucas, C. H. Schiesser, J. Org. Chem. 1996, 61, 5754-5761.
[15] J. L. Holmes, F. P. Lossing, P. M. Mayer, J. Am. Chem. Soc. 1991,
113, 9723-9728.
[16] W. H. Urry, E. S. Huyser, J. Am. Chem. Soc. 1953, 75, 4876-4877.
[17] A. H. C. Horn, T. Clark, J. Am. Chem. Soc. 2003, 125, 2809-2816.
[18] B. P. Roberts, Chem. Soc. Rev. 1999, 28, 25-35.
Acknowledgements
[19] a) X. Zhu, S. Chiba, Chem. Soc. Rev. 2016, 45, 4504-4523; b) Y.
Shimizu, M. Kanai, Tetrahedron Lett. 2014, 55, 3727-3737; c) S. R.
Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153-1169.
[20] a) C. Chatalova-Sazepin, Q. Wang, G. M. Sammis, J. Zhu, Angew.
Chem. Int. Ed. 2015, 54, 5443-5446; Angew. Chem. 2015, 127, 5533-
5536; b) T. M. Ha, C. Chatalova-Sazepin, Q. Wang, J. Zhu, Angew.
Chem. Int. Ed. 2016, 55, 9249-9252; Angew. Chem. 2016, 128, 9395-
9398; c) A. Bunescu, T. M. Ha, Q. Wang, J. Zhu, Angew. Chem. Int.
Ed. 2017, 56, 10555-105558; Angew. Chem. 2017, 129, 10691-10694.
This research was supported by the Swiss National Science
Foundation (SNSF, N° 200021-178846/1) and EPFL
(Switzerland). We thank Dr. F.-T. Farzaneh and Dr. R. Scopelliti
for X-ray crystallographic analysis of copper complex 18.
This article is protected by copyright. All rights reserved.