76, 157–323; (c) H. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran
´ ´
and C. O. de Ocariz, Mini-Rev. Med. Chem., 2005, 5, 869;
´
(d) A. Schmidt, A. Beutler and B. Snovydovych, Eur. J. Org. Chem.,
2008, 4073–4095; (e) L. Sorbera, J. Bolos and N. Serradell, Drugs
Future, 2006, 31, 585–589; (f) L. A. Clutterbuck, C. G. Posada,
C. Visintin, D. R. Riddal, B. Lancaster, P. J. Gane, J. Garthwaite
and D. L. Selwood, J. Med. Chem., 2009, 52, 2694–2707.
2 (a) J. Elguero, in Comprehensive Heterocyclic Chemistry,
ed. A. R. Katritzky and C. W. Rees, Pergamon Press, New York,
1984, vol. 5, p. 167; (b) J. C. Antilla, J. M. Baskin, T. E. Barder and
S. L. Buchwald, J. Org. Chem., 2004, 69, 5578–5587;
(c) M. Akazome, T. Kondo and Y. Watanabe, J. Org. Chem.,
1994, 59, 3375–3380; (d) M. V. Peters, R. S. Stoll, R. Goddard,
G. Buth and S. Hecht, J. Org. Chem., 2006, 71, 7840–7845;
(e) S. Andreonati, V. Sava, S. Makan and G. Kolodeev, Pharmazie,
1999, 54, 99.
Scheme 1 Synthesis of a selective ligand for estrogen receptor b.
Reaction conditions: (a) (1) AcOH/EtOH; (2) 0.1 eq. CuI, 0.5 eq.
TMEDA, THF, 40 1C, 2 h, 42%; (b) 1.0 eq. NCS, THF, 40 1C, 2 h,
85%; (c) 10 eq. NaOH, THF/H2O (2 : 1), 15 min, 95%.
3 (a) P. G. Baraldi, G. Balboni, M. G. Pavani, G. Spalluto,
M. A. Tabrizi, E. Clercq, De J. Balzarini, T. Bando,
H. Sugiyama and R. Romagnoli, J. Med. Chem., 2001, 44, 2536;
(b) S. Qian, J. Cao, Y. Yan, M. Sun, H. Zhu, Y. Hu, Q. He and
B. Yang, Mol. Cell. Biochem., 2010, 345, 13; (c) B. K. Keppler and
M. Hartmann, Met.-Based Drugs, 1994, 1(2–3), 145.
4 (a) G. A. Bistochi, G. De Meo, M. Pedini, A. Ricci, H. Brouilhet,
S. Bucherie, M. Rabaud and P. Jacquignon, Farmaco, Ed. Sci.,
1981, 36, 315; (b) G. Picciola, F. Ravenna, G. Carenini, P. Gentili
and M. Riva, Farmaco, Ed. Sci., 1981, 36, 1037.
5 Y. Ykeda, N. Takano, H. Matsushita, Y. Shiraki, T. Koide,
R. Nagashima, Y. Fujimura, M. Shindo, S. Suzuki and
T. Iwasaki, Arzneim.-Forsch., Beih., 1979, 29, 511.
6 (a) W. Han, J. C. Pelletier and C. N. Hodge, Bioorg. Med. Chem. Lett.,
1998, 8, 3615; (b) J.-H. Sun, C. A. Teleha, J.-S. Yan, J. D. Rodgers and
D. A. Nugiel, J. Org. Chem., 1997, 62, 5627; (c) J. D. Rodgers,
B. L. Johnson, H. Wang, R. A. Greenberg, S. Erickson-Viitanen,
R. M. Klabe, B. C. Cordova, M. M. Rayner, G. N. Lam and
C.-H. Chang, Bioorg. Med. Chem. Lett., 1996, 6, 2919.
7 G. Corsi, G. Palazzo, C. Germani, P. S. Barcellona and
B. Silvestrini, J. Med. Chem., 1976, 19, 778.
8 (a) P. Molina, A. Arques and M. V. Vinader, Tetrahedron Lett.,
1989, 30, 6237; (b) B. A. Frontana-Uribe and C. Moinet, Tetra-
hedron, 1998, 54, 3197; (c) A. Y. Fedorov and J.-P. Finet, Tetra-
hedron Lett., 1999, 40, 2747.
Scheme 2 Plausible mechanism.
The possible mechanism is illustrated in Scheme 2.
Although the addition of tertiary amines is critical, their role
is still not very clear.15 Two pathways are likely involved in
this reaction. In path A, tertiary amines may purely act as
ligands to fine tune the catalytic ability of copper iodide. After
forming azide-copper(I) complex II, intramolecular cyclization
gave intermediate III. Then, the emission of N2 and dissociation
of copper catalyst furnished the final product VI. In path B,
firstly, the nucleophilic addition of tertiary amines to the imine I
gave a zwitterionic intermediate IV. Upon activation of the
azide group by copper(I), the nucleophilic nitrogen will add to
the electrophilic azide to produce the intermediate V. Following
this intramolecular N–N bond formation, elimination of the
tertiary amines and N2 afforded the desired product VI.
In conclusion, a concise, two-step protocol has been developed
for the rapid synthesis of functionalized 2H-indazoles and
1H-pyrazoles from easily accessible starting materials under
mild conditions. This method has been found to be generally
useful for the preparation of a wide variety of 2H-indazole and
1H-pyrazole derivatives some of which are difficult to make via
conventional approaches. The reaction demonstrates excellent
reactivity, broad functional group tolerance and high yields,
which has been further exemplified in one synthetic application.
By employing a combination of CuI and tertiary amines, we have
developed a highly efficient catalyst system for this intra-
molecular N–N bond formation reaction. Further investigations
into the mechanism and synthetic applications of this method are
currently underway.
9 (a) P. Lopez-Alvarado, C. Avendano and J. C. Menendez, J. Org.
´ ´
Chem., 1995, 60, 5678; (b) D. J. Slade, N. F. Pelz, W. Bodnar,
J. W. Lampe and P. S. Watson, J. Org. Chem., 2009, 74, 6331;
(c) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams,
M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett.,
1998, 39, 2941; (d) R. M. Claramunt, J. Elguero and R. Garceran,
Heterocycles, 1985, 23, 2895.
10 (a) N. Halland, M. Nazare, O. R’kyek, J. Alonso, M. Urmann and
´
A. Lindenschmidt, Angew. Chem., Int. Ed., 2009, 48, 6879;
(b) B. Haag, Z. Peng and P. Knochel, Org. Lett., 2009, 11, 4270;
(c) A. Taher, S. Ladwa, S. T. Rajan and G. W. Weaver, Tetrahedron
Lett., 2000, 41, 9893; (d) D. J. Varughese, M. S. Manhas and
A. K. Bose, Tetrahedron Lett., 2006, 47, 6795; (e) K. Y. Lee,
S. Gowrisankar and J. N. Kim, Tetrahedron Lett., 2005, 46, 5387;
(f) S. A. Ohnmacht, A. J. Culshaw and M. F. Greaney, Org. Lett.,
2010, 12, 224; (g) C. Wu, Y. Fang, R. C. Larock and F. Shi, Org.
Lett., 2010, 12, 2234.
11 B. J. Stokes, C. V. Vogel, L. K. Urnezis, M. Pan and T. G. Driver,
Org. Lett., 2010, 12, 2884.
12 (a) H. Kwart and A. A. Kahn, J. Am. Chem. Soc., 1967, 89, 1950;
(b) Y. M. Badiei, A. Krishnaswamy, M. M. Melzer and
T. H. Warren, J. Am. Chem. Soc., 2006, 128, 15056;
(c) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino,
F. W. Heinemann, T. R. Cundari and T. H. Warren, Angew.
Chem., Int. Ed., 2008, 47, 9961.
This work was supported by the national ‘973’ grant from the
Ministry of Science and Technology (grant # 2011CB965300) and
Tsinghua University 985 Phase II funds. We thank Prof. Y. F. Tang
and Prof. L. Liu (Tsinghua University) for helpful discussions.
13 Other amines such as pyridine, Et2NH and DMAP can also
improve the reaction.
14 M. D. Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen
and J. A. Katzenellenbogen, J. Med. Chem., 2005, 48, 1132.
15 Other additives such as K2CO3, CsCO3 and tBuOK, etc., had also
been tested. The observations found that those bases cannot
improve the reactions as amines did, which may suggest that the
additives might need to be either potential ligands for copper or be
directly involved in the formation of intermediates.
Notes and references
1 (a) W. Stadlbauer, in Science of Synthesis, vol. 12, Georg Thieme,
Stuttgart, 2002, pp. 227–310; (b) V. Minkin, D. Garnovskii,
J. Elguero, A. Katritzky and O. Denisko, Adv. Heterocycl. Chem.,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10133–10135 10135