L. Cointeaux et al. / Tetrahedron Letters 43 (2002) 6275–6277
6277
the five-member cyclic hydroperoxide 9a. Similar results
8. (a) Dussault, P.; Sahli, A. J. Org. Chem. 1992, 57,
1009–1012; (b) Dussault, P. Synlett 1995, 997–1003.
9. Johnson, R. A.; Nidy, E. G.; Merritt, M. V. J. Am.
Chem. Soc. 1978, 100, 7960–7966.
10. Walling, C.; Buckler, S. A. J. Am. Chem. Soc. 1955, 77,
6032–6038.
were obtained with AIBN as radical initiator.
For the cyclization of the seven-member ring precursor
hydroperoxide 8c, we were not able to detect any trace
of 7-exo-trig or 8-endo-trig products using either
DBPO or AIBN. The increase of the degree of freedom
with the length of the alkyl chain was presumably too
unfavorable for the cyclization of the peroxy radical
that decomposed. However, we thought that the
entropic factor could be limited in retrosynthetic pre-
cursor 2, as a second ring could significantly reduce the
degree of freedom of the chain with the peroxy radical.
11. Casteel, D. A.; Jung, K.-E. J. Chem. Soc., Perkin Trans.
1 1991, 2597–2598.
12. Collazo, L.; Guziec, F. S.; Hu, W.-X.; Mun˜os, A.; Wei,
D.; Alvarado, M. J. Org. Chem. 1993, 58, 6169–6170.
13. DBPO explodes violently under a shock or by scratching
it. For its preparation see: Bartlett, P. D.; Benzing, E. P.;
Pincock, R. E. J. Am. Chem. Soc. 1960, 82, 1762–1768.
14. All new compounds reported here were characterized on
1
the basis of spectroscopic data (IR, H and 13C NMR),
As exo-trig cyclic isomers were the sole isolated prod-
ucts following our strategy with five- and six-membered
cyclic peroxides as starting materials, this encouraged
us to pursue this route for the later synthesis of car-
damom peroxide 1.
[h]D and elemental analyses. Selected spectral data: Com-
pound 7c: [h]D −17 (c 0.97, CH2Cl2); 1H NMR (200
MHz, CDCl3): 5.21–5.10 (m, 1H), 4.00 (t, J=6.5 Hz,
3H), 3.31 (s, 3H), 2.34 (dt, J=8.3, 5.6 Hz, 1H), 2.25–2.13
(m, 2H), 2.13–1.87 (m, 4H), 1.60 (q, J=6.6 Hz, 2H),
1.50–1.31 (m, 2H), 1.38 (s, 6H), 1.26 (s, 3H), 1.13 (d,
J=8.3 Hz, 1H), 0.82 (s, 3H). 13C NMR (50 MHz,
CDCl3): l 147.9, 116.0, 104.4, 74.8, 49.0, 45.7, 40.9, 37.8,
36.6, 31.6, 31.2, 27.6, 26.3, 23.7, 22.7, 21.1. Compound
8c: 1H NMR (200 MHz, C6D6): l 6.61 (bs, 1H), 5.33–
5.06 (m, 1H), 3.81 (t, J=6.3 Hz, 2H), 2.33 (dt, J=8.3, 5.6
Hz, 1H), 2.23–2.14 (m, 2H), 2.13–1.80 (m, 4H), 1.43–1.32
(m, 5H), 1.37 (s, 3H), 0.89 (s, 3H). 13C NMR (50 MHz,
CDCl3): l 148.5, 116.4, 76.9, 46.2, 41.3, 38.2, 37.1, 32.1,
31.7, 27.9, 26.6, 24.0, 21.4. Compound 10a: [h]D +17 (c
0.17, EtOH); 1H NMR (200 MHz, CDCl3): l 4.37 (dt,
J=7.9, 4.5 Hz, 1H), 4.11 (q, J=7.9 Hz, 1H), 2.96 (dt,
J=11.3, 7.5 Hz, 1H), 2.70–2.64 (m, 2H), 2.33–2.05 (m,
4H), 1.55 (d, J=11.3 Hz, 1H), 1.37 (s, 3H), 0.88 (s, 3H).
13C NMR (50 MHz, CDCl3): l 209.3, 88.8, 71.4, 48.1,
44.4, 43.3, 39.8, 38.1, 29.4, 26.5, 22.2. Compound 10b:
[h]D −7 (c 1.62, EtOH); 1H NMR (400 MHz, C6D6): l
4.05 (dt, J=12.2, 6.1 Hz, 1H), 3.70 (dt, J=12.2, 4.5 Hz,
1H), 2.46–2.35 (m, 2H), 2.35–2.29 (m, 2H), 2.23–2.11 (m,
1H), 1.84 (d, J=10.9 Hz, 1H), 1.60–1.49 (m, 1H), 1.49–
1.37 (m, 2H), 1.19 (dt, J=13.8, 5.0 Hz, 1H), 1.03 (s, 3H),
0.52 (s, 3H). 13C NMR (100 MHz, C6D6): l 207.5, 86.9,
72.0, 45.6, 43.7, 38.9, 38.5, 27.7, 27.3, 27.2, 22.2, 19.8.
15. Goosen, A.; Kindermans, S. S. Afr. J. Chem. 1997, 50,
1–8.
Acknowledgements
We thank Dr. Jacqueline Mahuteau and Mrs. Sophie
Mairesse-Lebrun for valuable assistance on NMR
study and elemental analyses.
References
1. Kamchonwongpaisan, S.; Nilanonta, C.; Tarnchompoo,
B.; Thebtaranonth, C.; Thebtaranonth, Y.; Yuthavong,
Y.; Kongsaeree, P.; Clardy, J. Tetrahedron Lett. 1995, 36,
1821–1824.
2. Ru¨cker, G.; Walter, R. D.; Manns, D.; Mayer, R. Planta
Med. 1991, 57, 295–296.
3. See for example: Cazelles, J.; Camuzat-Dedenis, B.;
Provot, O.; Robert, A.; Mayrargue, J.; Meunier, B. J.
Chem. Soc., Perkin Trans. 1 2000, 1265–1270 and refer-
ences cited therein.
4. (a) Funk, M. O.; Isaac, R.; Porter, N. A. J. Am. Chem.
Soc. 1975, 97, 1281–1282; (b) Porter, N. A.; Funk, M. O.;
Gilmore, D.; Isaac, R.; Nixon, J. J. Am. Chem. Soc. 1976,
98, 6000–6005.
5. (a) Beckwith, A. L. J.; Wagner, R. D. J. Am. Chem. Soc.
1979, 101, 7099–7100; (b) Beckwith, A. L. J.; Easton, C.
J.; Serelis, A. K. Chem. Commun. 1980, 482–483; (c)
Boukouvalas, J.; Pouliot, R.; Fre´chette, Y. Tetrahedron
Lett. 1995, 36, 4167–4170.
16. Mihelich, E. D.; Eickhoff, D. J. J. Org. Chem. 1983, 48,
4135–4137.
17. Griesbeck, A. G.; Lex, J.; Saygin, K. M.; Steinwascher, J.
Chem. Commun. 2000, 2205–2206.
18. Courtneidge, J. L. Chem. Commun. 1992, 1270–1272.
19. Corey, E. J.; Wang, Z. Tetrahedron Lett. 1994, 35, 539–
542.
6. Midland, M. M.; Kazubski, A.; Woodling, R. E. J. Org.
Chem. 1991, 56, 1068–1074.
7. Snider, B. B. J. Org. Chem. 1974, 39, 255–256.