(E)-Alkene trans-Xaa-Pro Dipeptide Mimetics
proline mimetics (L-Ala-ψ[(Z)-CHdC]-L-Pro) correspond-
ing to an L-Ala-L-Pro sequence.9c In this synthesis, a
Still-Wittig [2,3]-sigmatoropic rearrangement10 in THF
was used for selective formation of trisubstituted (Z)-
alkenes.11 Subsequently, in the synthesis of Ser-Pro
dipeptide alkene isosteres they found that a Still-Wittig
reaction afforded opposite selectivities for (Z: E)-alkenes
in THF (3:1) vs toluene (1:3).9e Extensive synthetic efforts
toward (E)-alkene dipeptide isosteres 6 have been made
by several groups, including us.12-16 Organocopper-medi-
ated reactions previously employed by us have converted
either γ-mesyloxy-R,â-enoates 3,13 â-aziridinyl-R,â-enoates
4,12f-g,14 or â-(1,3-oxazolidin-2-on-5-yl)-R,â-enoates 515 to
R-substituted â,γ-enoates corresponding to 6 in highly
regio- and stereoselective manners (Scheme 1).
Using our protocol, R-substituents corresponding to
side chain functionality can be introduced into dipeptide
mimetic backbones. However, in the case of Xaa-Pro
dipeptides, which have cyclic structures that include
peptide backbone, use of R,â-enoates as substrates (3-
5) cannot be applied to the synthesis of corresponding
mimetics. This fact prompted us to examine the feasibil-
ity of introducing “CO2H” functionality included in the
backbone in regio- and stereoselective fashion using
organocopper-mediated reactions which would yield Xaa-
Pro type alkene dipeptide isosteres. Regarding this point,
Etzkorn et al. also utilized a strategy based on Still-
Wittig [2,3]-rearrangements to introduce “CO2H” units.9c
Since hydroxyl functionality in serine residues can be
converted to other functional groups, we selected Ser-
Pro mimetics as synthetic targets. For introduction of the
“CO2H” moiety, we envisioned using isopropoxydimeth-
ylsilylmethyl groups,17 which would be incorporated by
F IGURE 2. (Z)- or (E)-Alkene dipeptide isosteres correspond-
ing to cis- or trans-proline peptide bonds, respectively.
energy conformers in Pro-containing proteins/peptides,
which complicate understanding the relationship be-
tween Xaa-Pro geometry and biological activity. Although
investigations of Xaa-Pro geometries of bioactive peptides
using techniques such as X-ray and NMR spectroscopy
have been extensively undertaken, it is difficult for such
studies to define whether cis- or trans-geometries are
involved with particular bioactive conformations.4
Restriction of Xaa-Pro imide conformations provides
one promising means for studying relationships between
imide bond geometry and biological activity of peptides.
To control geometry, alkylproline analogues possessing
substituents at the 2- or 5-positions of proline have been
used to induce preference for trans- or cis-isomer popula-
tions, respectively.5,6 Additionally, syntheses of dipeptide
isosteres7 corresponding to Xaa-Pro having cis- or trans-
imide geometries have been made.8,9 For example, cyclo-
cystine,8b dipeptide lactams,8c and tetrazole derivatives8e
have been incorporated as the cis-Pro mimetics into
somatostatin, resulting in potent peptide mimetics.
Replacement of Xaa-Pro imide bonds with (Z)- or (E)-
alkene units (1 or 2 in Figure 2) represents a more
straightforward method for mimicking proline imide
backbone geometry. Dipeptide isosteres, including fluo-
roalkenes with trans-Pro geometry, have been non-
stereoselectively synthesized by a strategy which relied
on construction of alkene units using Peterson or Hor-
ner-Emmons olefination reactions of 2-substituted cyclo-
pentanones, followed by derivatization of terminal func-
tional groups.9a,b Etzkorn et al. have reported the first
enantio- and regioselective synthesis of (Z)-alkene cis-
(10) (a) Still, W. C.; Mitra, A.; J . Am. Chem. Soc. 1978, 100, 1927.
(b) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885. (c) Nakai, T.;
Mikami, K. Org. React. 1994, 46, 105.
(11) For reference of utilization of Still-Wittig rearrangement to
the synthesis of alkene isosteres, see: Bohnstedt, A. C.; Prasad, J . V.
N. V.; Rich, D. H. Tetrahedron Lett. 1993, 34, 5217.
(12) For some recent examples, see: (a) Spaltenstein, A.; Carpino,
P. A.; Miyake, F.; Hopkins, P. B. J . Org. Chem. 1987, 52, 3759. (b)
Allmendinger, T.; Felder, E.; Hungerbu¨hler, E. Tetrahedron Lett. 1990,
31, 7301. (c) Daly, M. J .; Ward, R. A.; Thompson, D. F.; Procter, G.
Tetrahedron Lett. 1995, 36, 7545. (d) Kranz, M.; Kessler, H. Tetrahe-
dron Lett. 1996, 37, 5359. (e) Devadder, S.; Verheyden, P.; J aspers,
H. C. M.; Van Binst, G.; Tourwe´, D. Tetrahedron Lett. 1996, 37, 703.
(f) Wipf, P.; Fritch, P. C. J . Org. Chem. 1994, 59, 4875. (g) Wipf, P.;
Henninger, T. C. J . Org. Chem. 1997, 62, 1586. (h) Wipf, P.; Henninger,
T. C.; Geib, S. J . J . Org. Chem. 1998, 63, 6088.
(13) (a) Ibuka, T.; Habashita, H.; Funakoshi, S.; Fujii, N.; Oguchi,
Y.; Uyehara, T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1990,
29, 801. (b) Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.;
Uyehara, T.; Yamamoto, Y. J . Org. Chem. 1991, 56, 4370. (c) Oishi,
S.; Kamano, T.; Niida, A.; Odagaki, Y.; Tamamura, H.; Otaka, A.;
Hamanaka N.; Fujii, N. Org. Lett. 2002, 4, 1051.
(14) (a) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Fujii, N.;
Mimura, N.; Miwa, Y.; Taga, T.; Yamamoto, Y. Angew. Chem., Int. Ed.
Engl. 1994, 33, 652. (b) Fujii, N.; Nakai, K.; Tamamura, H.; Otaka,
A.; Mimura, N.; Miwa, Y.; Taga, T.; Yamamoto, Y.; Ibuka, T. J . Chem.
Soc., Perkin Trans. 1 1995, 1359.
(15) Oishi, S.; Niida, A.; Kamano, T.; Odagaki, Y.; Tamamura, H.;
Otaka, A.; Hamanaka, N.; Fujii, N. Org. Lett. 2002, 4, 1055.
(16) (a) Tamamura, H.; Yamashita, M.; Nakajima, Y.; Sakano, K.;
Otaka, A.; Ohno, H.; Ibuka, T.; Fujii, N. J . Chem. Soc., Perkin Trans.
1 1999, 2983. (b) Oishi, S.; Tamamura, H.; Yamashita, M.; Y. Odagaki,
Y.; Hamanaka, N.; Otaka, A.; Fujii, N. J . Chem. Soc., Perkin Trans. 1
2001, 2445. (c) Otaka, A.; Watanabe, H.; Mitsuyama, E.; Yukimasa,
A.; Tamamura, H.; Fujii, N. Tetrahedron Lett. 2001, 42, 285. (d) Otaka,
A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura, H.; Fujii, N.
Tetrahedron Lett. 2001, 42, 5443.
(4) (a) Yamazaki, T.; Ro, S.; Goodman, M.; Chung, N. N.; Schiller,
P. W. J . Med. Chem. 1993, 36, 708. (b) Adjadj, E.; Naudat, V.; Quiniou,
E.; Wouters, D.; Sautie`re, P.; Craescu, C. T. Eur. J . Biochem. 1997,
246, 218. (c) Yu, W. F.; Tung, C. S.; Wang, H.; Tasayco, M. L. Protein
Sci. 2000, 9, 20 and references therein.
(5) Delaney, N. G.; Madison, V. J . Am. Chem. Soc. 1982, 104, 6635.
(6) (a) Delaney, N. G.; Madison, V. Int. J . Pept. Protein Res. 1982,
19, 543. (b) Magaard, V. M.; Sanchez, R. M.; Bean, J . W.; Moore, M. L.
Tetrahedron Lett. 1993, 34, 381. (c) Beausoleil, E.; Lubell, W. D. J .
Am. Chem. Soc. 1996, 118, 12902. (d) Beausoleil, E.; Lubell, W. D.
Biopolymers 2000, 53, 249.
(7) For review of peptide mimetics, see: In Peptidomimetics Proto-
cols; Kazmierski, W. M., Eds.; Humana Press: Totowa, 1999.
(8) (a) Zabrocki, J .; Dunbar, J . B.; Marshall, K. W.; Toth, M. V.;
Marshall, G. R. J . Org. Chem. 1992, 57, 202. (b) Brady, S. F.; Paleveda,
W. J ., J r.; Arison, B. H.; Saperstein, R.; Brady, E. J .; Raynor, K.;
Reisine, T.; Veber, D. F.; Freidinger, R. M. Tetrahedron 1993, 49, 3449.
(c) Gramberg, D.; Weber, C.; Beeli, R.; Inglis, J .; Bruns, C.; Robinson,
J . A. Helv. Chim. Acta 1995, 78, 1588. (d) Chalmers, D. K.; Marshall,
G. R. J . Am. Chem. Soc. 1995, 117, 5927. (e) Beusen, D. D.; Zabrocki,
J .; Slomczynska, U.; Head, R. D. Kao, J . L.-F.; Marshall, G. R.
Biopolymers 1995, 36, 181. (f) Curran, T. P.; Marcaurelle, L. A.;
O’Sullivan, K. M. Org. Lett. 1999, 1, 1225. (g) Shireman, B. T.; Miller,
M. J .; J onas, M.; Wiest, O. J . Org. Chem. 2001, 66, 6046. (h) Breznik,
M.; Gradolnik, S. G.; Giester, G.; Leban, I.; Kikelj, D. J . Org. Chem.
2001, 66, 7044.
(9) (a) Andres, C. J .; Macdonald, T. L.; Ocain, T. D.; Longhi, D. J .
Org. Chem. 1993, 58, 6609. (b) Welch, J . T.; Lin, J . Tetrahedron 1996,
52, 291. (c) Hart, S. A.; Sabat, M.; Etzkorn, F. A. J . Org. Chem. 1998,
63, 7580. (d) Hart, S. A.; Etzkorn, F. A. J . Org. Chem. 1999, 64, 2998.
(e) Hart, S. A.; Trindle, C. O.; Etzkorn, F. A. Org. Lett. 2001, 3, 1789.
(17) (a) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Oragano-
metallics 1983, 2, 1694. (b) Tamao, K.; Ishida, N.; Ito, Y.; Kumada, M.
Org. Synth. 1990, 69, 96.
J . Org. Chem, Vol. 67, No. 17, 2002 6153