Dalton Transactions
Paper
patterns of the activated sample (the sample before the immer-
sion into the solvent) and the patterns measured on the
sample after liquid-phase Knoevenagel condensation were
observed. The observed changes of the intensity ratios of diffr-
action peaks and small shifts of the corresponding diffraction
lines are probably related to the interaction of the framework
of 1 with reaction products/substrates.
V. R. dos, S. Malta, J. D. L. Dutra, N. B. da Costa Jr.,
R. O. Freire and S. A. Júnior, J. Solid State Chem., 2013, 197,
7.
3 S. S. Han, J. L. Mendoza-Cortés and W. A. Goddard III,
Chem. Soc. Rev., 2009, 38, 1460; W. Wang, X. Dong, J. Nan,
W. Jin, Z. Hu, Y. Chen and J. Jiang, Chem. Commun., 2012,
48, 7022.
4 L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38,
1248; J.-M. Gu, W.-S. Kim and S. Huh, Dalton Trans., 2011,
40, 10826.
Conclusions
5 Z. Ma and B. Moulton, Coord. Chem. Rev., 2011, 255, 1623;
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie,
T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz,
J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories,
L. Cynober, S. Gil, G. Ferey, P. Couvreur and R. Gref, Nat.
Mater., 2010, 9, 172.
6 B. Cen, Y. Yang, F. Zapata, G. Lin and G. Qian, Adv. Mater.,
2007, 19, 1693; M. D. Allendorf, C. A. Bauer, R. K. Bhakta
and R. J. T. Houk, Chem. Soc. Rev., 2009, 38, 1330.
7 T. Uemura, S. Horike and S. Kitagawa, Chem.–Asian J., 2006,
1, 36; T. Uemura, N. Yanai and S. Kitagawa, Chem. Soc.
Rev., 2009, 38, 1228.
8 A. Corma, H. Garcia and F. Xamena, Chem. Rev., 2010, 110,
4606; Z. Wang, G. Chen and K. Ding, Chem. Rev., 2009, 109,
322.
9 M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012,
112, 1196.
We have prepared and characterized a new non-interpenetrat-
ing metal–organic framework constructed by MTB4− ligands
and Ni4 clusters that imitates the fluorite structure. The IR
spectroscopy, thermal analysis and in situ HE-PXRD measure-
ments revealed that removal of guest molecules from the chan-
nels leads to the opened porous framework. The comparison
of sorption properties of complex 1 with other reported com-
plexes containing MTB4− ligand shows that complex 1 exhibits
the highest BET surface area (700 m2
g
−1) and the highest
carbon dioxide uptake (12.36 wt% at 0 °C and 101 kPa) among
the MTB compounds. The prepared metal–organic framework
provides high activity in Knoevenagel condensation, reaching
up to 100% yields without significant loss in activity after
several catalytic runs. It was demonstrated that the reaction
proceeds mainly inside the pore system of compound 1 and
the framework of the catalyst has reasonable stability under
the used conditions.
10 M. Opanasenko, M. Shamzhy and J. Čejka, ChemCatChem,
2013, 5, 1024.
11 M. Hartmann and M. Fischer, Microporous Mesoporous
Mater., 2012, 164, 38; F. Xamena, F. G. Cirujano and
A. Corma, Microporous Mesoporous Mater., 2012, 157, 112;
L. T. L. Nguyen, K. K. A. Le, H. X. Truong and N. T. S. Phan,
Catal. Sci. Technol., 2012, 2, 521; A. Dhakshinamoorthy,
M. Opanasenko, J. Čejka and H. Garcia, Adv. Synth. Catal.,
2013, 355, 247.
12 M. Opanasenko, A. Dhakshinamoorthy, J. S. Chang,
H. Garcia and J. Čejka, ChemSusChem, 2013, 6, 865.
13 A. Dhakshinamoorthy, M. Opanasenko, J. Čejka and
H. Garcia, Catal. Sci. Technol., 2013, 3, 2509.
Acknowledgements
This work was supported by VEGA project, Ministry of Edu-
cation of Slovak Republic under contract no. 1/0583/11, and
the Slovak Research and Development Agency under contract
no. APVV 0132-11. V.Z. thanks DESY/HASYLAB project no.
I-20110282 EC for the support during the synchrotron related
measurements. J.Č. acknowledges the Czech Science Foun-
dation for the support of this research (P106/12/G015). The
authors would like to thank Dr J. Kuchár for help with the
single crystal XRD measurements and refinement.
14 M. Opanasenko, A. Dhakshinamoorthy, J. Čejka and
H. Garcia, ChemCatChem, 2013, 5, 1553.
15 A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005,
217, 17998; P. L. Llewellyn, S. Bourrelly, C. Serre,
A. Vimont, M. Daturi, L. Hamon, G. De Weireld,
J.-S. Chang, D.-Y. Hong, Y. K. Hwang, S. H. Jhung and
G. Férez, Langmuir, 2008, 24, 7245; H. Furukawa, N. Ko,
Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin,
R. Q. Snurr, M. O’Keeffe, J. Kim and O. M. Yaghi, Science,
2010, 329, 424.
Notes and references
1 A. Y. Robin and K. M. Fromm, Coord. Chem. Rev., 2006,
250, 2127; J. L. C. Rowsell and O. M. Yaghi, Microporous
Mesoporous Mater., 2004, 73, 3.
2 E. Tynan, P. Jensen, P. E. Kruger and A. C. Lees, Chem.
Commun., 2004, 776; J. Lincke, D. Lässig, J. Moellmer,
C. Reichenbach, A. Puls, A. Moeller, R. Gläser, G. Kalies,
R. Staudt and H. Krautscheid, Microporous Mesoporous 16 J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi,
Mater., 2011, 142, 62; Y. Li, J. P. Zou, W. Q. Zou,
F. K. Zheng, G. C. Guo, C. Z. Lu and C. J. Huang, Inogr.
Chem. Commun., 2007, 10, 1026; Y. B. Go, X. Wang,
D. B. Moler, M. O’Keeffe and O. M. Yaghi, J. Am. Chem.
Soc., 2001, 123, 8239; M. Almáši, V. Zeleňák, R. Gyepes,
A. Zukal and J. Čejka, Colloids Surf., A, 2013, 437, 101.
E. V. Anokhina and A. J. Jacobson, Inorg. Chem., 2005, 44, 17 L. Ma, A. Jin, Z. Xie and W. Lin, Angew. Chem., Int. Ed.,
8265; C. A. F. de Oliveira, F. D. da Silva, I. Malvestiti,
2009, 48, 9905.
This journal is © The Royal Society of Chemistry 2014
Dalton Trans., 2014, 43, 3730–3738 | 3737